Instructor’s Manual

for

C++ How to Program, 3/e

S p e <
OBJECT-ORIENTED

DESIGN

Deitel, Deitel & Nieto

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

C++ How to Program: Third Edition
Instructor’s Manual Contents

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter5
Chapter 6
Chapter?7
Chapter 8
Chapter9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Appendix

Preface

Introduction to Computers and C++ Programming: Solutions
Control Structures: Solutions

Functions: Solutions

Arrays Solutions:

Pointers and Strings: Solutions

Classes and Data Abstraction: Solutions

Classes: Part lI: Solutions

Operator Overloading: Solutions

Inheritance: Solutions

Virtual Functions and Polymorphism: Solutions

C+4+ Stream Input/Output: Solutions

Templates: Solutions

Exception Handling: Solutions

File Processing: Solutions

Data Structures: Solutions

Bits, Characters, Strings and Structures: Solutions

The Preprocessor: Solutions

C Legacy Code Topics: Solutions

Class string and String Stream Processing: Solutions
Standard Template Library (STL): Solutions

Standard C++ Language Additions: Solutions

C++ Multimedia Cyber Classroom Solutions Provided on CD

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

15

66
120
170
235
264
276
299
318
333
348
359
370
390
498
524
531
541
559
565
573

Preface

Thank you for considering and/or adopting our text C++ How to Program: Third Edition. If you have not read
the preface to C++ How to Program: Third Edition, please do so. The preface contains a careful walkthrough of
the book’s key features, including our new Unified Modeling Language”" (UML"™) case study, which carefully
introduces the reader to the UML and object-oriented design (OOD). Students are presented with a detailed prob-
lem statement and guided through a simplified, UML-based object-oriented design process. The complete 1000-
line C++ program solution for the case study is presented in the book and provided on the CD-ROM in the back
of the textbook.

We have worked hard to produce a textbook and ancillaries that we hope you and your students will find valu-
able. The following ancillary resources are available:

* C++ How to Program: Third Edition’s 250 program examples are included on the CD-ROM in the back
of the textbook. This helps instructors prepare lectures faster and helps students master C++. The examples
are also available for download atwww.deitel.com. When extracting the source code from the ZIP file,
you must use a ZIP-file reader such as WinZip (www.winzip.com) or PKZIP (www.pkware.com)
that understands directories. The file should be extracted into a separate directory (e.g.,
cpphtp3e_examples).

* Microsoft Visual C++ 6 Introductory Edition software is provided on the textbook’s CD-ROM. This soft-
ware allows students to edit, compile and debug C++ programs. We have provided at no charge a short Vi-
sual C++ 6 tutorial (in Adobe PDF format) on our Web site (www.deitel.com).

e This C++ How to Program: Third Edition Instructor’s Manual on CD contains answers to most of the ex-
ercises in the textbook. The programs are separated into directories by chapter and exercise number.

* The optional C++ Multimedia Cyber Classroom: Third Edition is an interactive multimedia CD version of
the book for Windows. Its features include audio walkthroughs of programs, section review questions (which
are available only on the C++ Multimedia Cyber Classroom: Third Edition), a text-search engine, the ability
to execute example programs, and more. The Cyber Classroom helps students get more out of their courses.
The Cyber Classroom is also useful for students who miss a lecture and have to catch up quickly. The Cyber
Classroom is available as a stand-alone product (see the last few pages of the textbook for the ISBN number)
or bundled with the textbook (at a discount) in a product called The Complete C++ Training Course: Third
Edition (ISBN# 0-13-089563-6).

* Companion Web site (www.prenhall.com/deitel) provides instructor and student resources. In-
structor resources include textbook appendices (e.g., Appendix D, "C++ Internet and Web Resources") and
a syllabus manager for lesson planning. Student resources include chapter objectives, true/false questions,
chapter highlights, reference materials and a message board.

e Customizable Powerpoint Instructor Lecture Notes, with many complete features including source code,
and key discussion points for each program and major illustration. These lecture notes are available for in-
structors and students at no charge at our Web site www.deitel.com.

* Lab Manual (available Spring 2001)—a for-sale item containing closed-lab sessions.
We would sincerely appreciate your questions, comments, criticisms and corrections addressed to us at:

deitel@deitel.com

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

v

We will respond immediately. Please read the latest copy of the Deitel Buzz (published every April and
November) for information on forthcoming Deitel publications, ancillaries, product options and ordering infor-
mation. To receive the Deitel Buzz, please contact Jennie Burger (jennie_burger@prenhall.com).

Watch our Deitel & Associates, Inc. Web site www.deitel.com) and our Prentice Hall Web site
(www.prenhall.com/deitel) for the latest publication updates.

We would like to thank the extraordinary team of publishing professionals at Prentice Hall who made C++
How to Program: Third Edition and its ancillaries possible. Our Computer Science editor, Petra Recter, worked
closely with us to ensure the timely availability and professional quality of these ancillaries.

We would also like to thank two of our student interns—Aftab Bukhari (a Computer Science major at Boston
University) and Jason Rosenfeld (a Computer Science major at Northwestern University) for their assistance in
preparing this Instructor’s Manual.

Harvey M. Deitel
Paul J. Deitel

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Introduction to Computers and
C++ Programming
Solutions

SOLUTIONS
1.10 Categorize each of the following items as either hardware or software:
a) CPU

ANS: hardware.

b) C++ compiler
ANS: software.

c) ALU

ANS: hardware.

d) C++ preprocessor
ANS: software.

e) input unit

ANS: hardware.

f) an editor program
ANS: software.

1.117 Why might you want to write a program in a machine-independent language instead of a machine-dependent language?
Why might a machine-dependent language be more appropriate for writing certain types of programs?
ANS: Machine independent languages are useful for writing programs to be executed on multiple computer platforms.
Machine dependent languages are appropriate for writing programs to be executed on a single platform. Machine dependent
languages tend to exploit the efficiencies of a particular machine.

1.12 Fill in the blanks in each of the following statements:
a) Which logical unit of the computer receives information from outside the computer for use by the computer?

ANS: input unit.

b) The process of instructing the computer to solve specific problems is called

ANS: computer programming.

¢) What type of computer language uses English-like abbreviations for machine language instructions?

ANS: high-level language.

d) Which logical unit of the computer sends information that has already been processed by the computer to various de-
vices so that the information may be used outside the computer?

ANS: output unit.

e) Which logical unit of the computer retains information?

ANS: memory unit and secondary storage unit.

f) Which logical unit of the computer performs calculations?

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

2 Introduction to Computers and C++ Programming Solutions Chapter 1

ANS: arithmetic and logical unit.

g) Which logical unit of the computer makes logical decisions?

ANS: arithmetic and logical unit.

h) The level of computer language most convenient to the programmer for writing programs quickly and easily is

ANS: high-level language.

i) The only language that a computer can directly understand is called that computer's

ANS: machine language.

j) Which logical unit of the computer coordinates the activities of all the other logical
units? .

ANS: central processing unit.

1.13 Discuss the meaning of each of the following objects:
a) cin
ANS: This object refers to the standard input device that is normally connected to the keyboard.
b) cout
ANS: This object refers to the standard output device that is normally connected to the computer screen.
c) cerr
ANS: This object refers to the standard error device that is normally connected to the computer screen.

1.14 Why is so much attention today focused on object-oriented programming in general and C++ in particular?
ANS: Object-oriented programming enables the programmer to build reusable software components that model items in
the real world. Building software quickly, correctly, and economically has been an elusive goal in the software industry.
The modular, object-oriented design and implementation approach has been found to increase productivity 10 to 100 times
over conventional programming languages while reducing development time, errors, and cost. C++ is extremely popular
because it is a superset of the widely used C programming language. Programmers already familiar with C have an easier
time learing C++.

1.15 Fill in the blanks in each of the following:
a) are used to document a program and improve its readability.
ANS: comments
b) The object used to print information on the screen is
ANS: cout
¢) A C++ statement that makes a decision is
ANS: if
d) Calculations are normally performed by statements.
ANS: assignment
e) The object inputs values from the keyboard.
ANS: cin

1.16 Write a single C++ statement or line that accomplishes each of the following:
a) Print the message "Enter two numbers".
ANS: cout << "Enter two numbers";
b) Assign the product of variables b and ¢ to variable a.
ANS: a = b * c;
c) State that a program performs a sample payroll calculation (i.e., use text that helps to document a program).
ANS: // Sample Payroll Calculation Program
d) Input three integer values from the keyboard and into integer variables a, b and c.
ANS: cin >> a >> b >> c;

1.17 State which of the following are frue and which are false. If false, explain your answers.
a) C++ operators are evaluated from left to right.
ANS: False. Some operators are evaluated from left to right, while other operators are evaluated right to left.
b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales,
his_account_total,a, b, c, 2,22
ANS: True. All variables begin with an underscore or letter.
c) The statementcout << "a = 5;";is a typical example of an assignment statement.
ANS: False. The statement is an output statement. a = 5; is output to the screen.
d) A valid C++ arithmetic expression with no parentheses is evaluated from left to right.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 1 Infroduction to Computers and C++ Programming Solutions 3

1.18

1.19

ANS: False. Arithmetic operators can appear in any order in an expression. Since multiplication, division, and modulus
have higher precendence than addition and subtraction the statement cannot be true.

e) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

ANS: False. h22 is a valid variable name.

Fill in the blanks in each of the following:

a) What arithmetic operations are on the same level of precedence as multiplication?

ANS: division and modulus.

b) When parentheses are nested, which set of parentheses is evaluated first in an arithmetic expression?

ANS: innermost.

¢) A location in the computer's memory that may contain different values at various times throughout the execution of a
program is called a

ANS: variable.

What, if anything, prints when each of the following C++ statements is performed? If nothing prints, then answer “nothing.”

Assume x = 2andy = 3.

1.20

1.21

1.22

a) cout << x;

ANS: 2

b) cout << x + x;

ANS: 4

c) cout << "x=";

ANS: x=

d) cout << "x = " << x

ANS: x = 2

€) cout << X + y << " = " << y + x;
ANS: 5 = 5

) z=x+y;

ANS: nothing.

g) cin >> x >> y;

ANS: 23.

h) // cout << "x + y = " << x + y;

ANS: nothing.

i) cout << "\n";

ANS: A newline is output which positions the cursor at the beginning of the next line on the screen.

Which of the following C++ statements contain variables whose values are replaced?
a) cin >> b >> ¢ >> 4 >> e >> £;

b) p=41i+3 +k + 7;

¢) cout << "variables whose values are destroyed";

d) cout << "a = 5";

ANS: Parts (a) and (b).

Given the algebraic equation y = ax3 + 7, which of the following, if any, are correct C++ statements for this equation?
Q) y=a*x*x*x+17;

b y=a*x*x* (x+7);
o) y=(a*x) *x* (x+7);
d y=(a*x) *x*x+7;

e) y=a* (x*x*x)+7;
fl v=a*x* (x*x+7);

ANS: Parts (a), (d) and (e).

State the order of evaluation of the operators in each of the following C++ statements and show the value of x after each

statement is performed.

a) x =7+ 3 *6 /2 -1;
ANS: *, /, +, =, = 15

b) x = 2% 2+2*2 -2/ 2;

ANS: %, *, /, +, -, =, 3

) x=(3*9* (3+ (9*3/(3))));
ANS: * / 4 % *, 324

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

4 Introduction to Computers and C++ Programming Solutions Chapter 1

1.23 Write a program that asks the user to enter two numbers, obtains the two numbers from the user and prints the sum, product,
difference, and quotient of the two numbers.

1 // Exercise 1.23 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int numl, num2; // declare variables

11

12 cout << "Enter two integers: "; // prompt user
13 cin >> numl >> num2; // read values from keyboard
14

15 // output the results

16 cout << "The sum is " << numl + num2

17 << "\nThe product is " << numl * num2

18 << "\nThe difference is " << numl - num2
19 << "\nThe quotient is " << numl / num2 << endl;
20

21 return 0; // indicate successful termination
22

Enter two integers: 8 22
The sum is 30

The product is 176

The difference is -14
The quotient is 0

1.24 Write a program that prints the numbers 1 to 4 on the same line with each pair of adjacent numbers separated by one space.
Write the program using the following methods:

a) Using one output statement with one stream insertion operator.

b) Using one output statement with four stream insertion operators.

¢) Using four output statements.

1 // Exercise 1.24 Solution
2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 int main ()

8 {

9 // Part A

10 cout << "1 2 3 4\n";
11

12 // Part B

13 cout << "1 " << "2 " << "3 " << "4\n";
14

15 // Part C

16 cout << "1 »;

17 cout << "2 u;

18 cout << "3 ©;

19 cout << "4" << endl;
20

21 return 0;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 1 Infroduction to Computers and C++ Programming Solutions §

22
1234
1234
1234

1.25 Write a program that asks the user to enter two integers, obtains the numbers from the user, then prints the larger number
followed by the words "is larger." If the numbers are equal, print the message “These numbers are equal.”

1 // Exercise 1.25 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int numl, num2; // declaration

11

12 cout << "Enter two integers: "; // prompt
13 cin >> numl >> num2; // input to numbers
14

15 if (numl == num2)

16 cout << "These numbers are equal." << endl;
17

18 if (numl > num2)

19 cout << numl << " is larger." << endl;
20
21 if (num2 > numl)
22 cout << num2 << " is larger." << endl;
23
24 return 0;
25 }

Enter two integers: 22 8
22 is larger.

1.26 Write a program that inputs three integers from the keyboard and prints the sum, average, product, smallest and largest of
these numbers. The screen dialogue should appear as follows:

Input three different integers: 13 27 14
Sum is 54

Average is 18

Product is 4914

Smallest is 13

Largest is 27

// Exercise 1.26 Solution
#include <iostream>

BWN —

using std::cout;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

6 Introduction to Computers and C++ Programming Solutions

Chapter 1

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int numl, num2, num3, smallest, largest; // declaration
11

12 cout << "Input three different integers: "; // prompt
13 cin >> numl >> num2 >> num3; // input
14

15 largest = numl; // assume first number is largest
16

17 if (num2 > largest) // is num2 larger?

18 largest = num2;

19

20 if (num3 > largest) // is num3 larger?

21 largest = num3;

22

23 smallest = numl; // assume first number is smallest
24

25 if (num2 < smallest)

26 smallest = num2;

27

28 if (num3 < smallest)

29 smallest = num3;

30

31 cout << "Sum is " << numl + num2 + num3

32 << "\nAverage is " << (numl + num2 + num3) / 3
33 << "\nProduct is " << numl * num2 * num3

34 << "\nSmallest is " << smallest

35 << "\nLargest is " << largest << endl;

36

37 return 0;

38 3

Input three different integers: 13 27 14
Sum is 54

Average is 18

Product is 4914

Smallest is 13

Largest is 27

1.27

Write a program that reads in the radius of a circle and prints the circle’s diameter, circumference and area. Use the constant

value 3.14159 for P. Do these calculations in output statements. (Note: In this chapter, we have discussed only integer constants

and variables. In Chapter 3 we will discuss floating-point numbers, i.e., values that can have decimal points.)

1 // Exercise 1.27 Solution

2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6 wusing std::cin;

7

8 int main()

9 {

10 int radius; // declaration

11

12 cout << "Enter the circle radius: "; // prompt
13 cin >> radius; // input

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 1 Infroduction to Computers and C++ Programming Solutions 7

14

15 cout << "Diameter is " << radius * 2.0

16 << "\nCircumference is " << 2 * 3.14159 * radius

17 << "\nArea is " << 3.14159 * radius * radius << endl;
18

19 return 0;

20

Enter the circle radius: 8
Diameter is 16
Circumference is 50.2654
Area is 201.062

—

.28 Write a program that prints a box, an oval, an arrow and a diamond as follows:

khkkkkkkkk * % % * *

* * * * * %% * %

* * * * *kkkk * *

* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *

* * * * * * %
khkkkkkkkk * % % * *

1 // Exercise 1.28 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 main()

8 {

9 cout << WEkkkkkkkkk *kk * *\n"

10 << " * * * *kk * k\p"

11 << "k * * * *kkkk * *\n"
12 << "k * * * * * *\n"
13 << "k * * * * * *\n"
14 << "k * * * * * *\n"
15 << "k * * * * * *\n"
16 << "x * * * * * *\qn"
17 << NWhkkkkkkkk * k% * *n << endl;
18

19 return 0;

20)

1.29 What does the following code print?

cout << "k\p*k\nrkk\pkkkk\pkkkkk\pn,

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

8 Introduction to Computers and C++ Programming Solutions Chapter 1

ANS:

* %
* % %
*k k%
*hkkkk

1.30 Write a program that reads in five integers and determines and prints the largest and the smallest integers in the group. Use
only the programming techniques you learned in this chapter.

1 // Exercise 1.30 Solution
2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int numl, num2, num3, num4, num5, largest, smallest;
11

12 cout << "Enter five integers: ";
13 cin >> numl >> num2 >> num3 >> num4 >> num5;
14

15 largest = numl;

16 smallest = numl;

17

18 if (numl > largest)
19 largest = numl;

20

21 if (num2 > largest)
22 largest = num2;

23

24 if (num3 > largest)
25 largest = num3;

26

27 if (num4 > largest)
28 largest = numé4;

29

30 if (num5 > largest)
31 largest = num5;

32

33 if (numl < smallest)
34 smallest = numl;

35

36 if (num2 < smallest)
37 smallest = num2;

38

39 if (num3 < smallest)
40 smallest = num3;

41

42 if (num4 < smallest)
43 smallest = num4;

44

45 if (num5 < smallest)
46 smallest = num5;

47

48 cout << "Largest is " << largest

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 1 Infroduction to Computers and C++ Programming Solutions 9

49 << "\nSmallest is " << smallest << endl;
50

51 return 0;

52 3

Enter five integers: 88 22 8 78 21
Largest is 88
Smallest is 8

1.31 Write a program that reads an integer and determines and prints whether it is odd or even. (Hint: Use the modulus operator.
An even number is a multiple of two. Any multiple of two leaves a remainder of zero when divided by 2.)

1 // Exercise 1.31 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int num;

11

12 cout << "Enter a number: ";
13 cin >> num;

14

15 if (num % == 0)

16 cout << "The number " << num << " is even." << endl;
17

18 if (num % 2 != 0)

19 cout << "The number " << num << " is odd." << endl;
20
21 return 0;
22)

Enter a number: 73
The number 73 is odd.

1.32 Write a program that reads in two integers and determines and prints if the first is a multiple of the second. (Hint: Use the
modulus operator.)

1 // Exercise 1.32 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int numl, num2;

11

12 cout << "Enter two integers: ";
13 cin >> numl >> num2;

14

15 if (numl % num2 == 0)

16 cout << numl << " is a multiple of " << num2 << endl;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

10 Introduction to Computers and C++ Programming Solutions Chapter 1

17

18 if (numl % num2 != 0)

19 cout << numl << " is not a multiple of " << num2 << endl;
20

21 return 0;

22 3

Enter two integers: 22 8
22 is not a multiple of 8

1.33 Display a checkerboard pattern with eight output statements, then display the same pattern with as few output statements

as possible.

* * % %k * % % *
* * * * * * * *
* * % %k * * % *
* * * % % % * *
* * % * * * * *
* * * % *k * * %
* * % %k * % % *
* * * * * * * *

1 // Exercise 1.33 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 int main()

8 {

9 // Eight output statements

10 cout << "k * k *x *x % % *\pu;

'|'| cout << ll********\nll;

'|2 cout << "k *k k k *k * % *\nll;

13 cout << " * * *x % % % *x kx\pu,

]4 cout << "k * *x *x *x % % *\pv;

'|5 cout << " * * ¥ Kk Kk *k * *\nn’.

]6 cout << "k *k * k *k * % *\nll;

]7 cout << " *k *k * *k k * * *\n\n“;

18

19 // One output statement; 3 parts

20 cout << "k k k Kk k Kk Kk *k\p *k Kk *k * k % k *k\pk * *k Kk *k % *x *\pn"n
21 << Wk k k % k k* *x k\npn*k * * k % k * k\p * * * k * *x % *\pn
22 << Mk Kk Kk k k Kk k k\p * *k k % % % *x k\pv,

23

24 cout << endl; // ensure everything is displayed
25

26 return 0;

27 1}

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 1 Infroduction to Computers and C++ Programming Solutions 11

* % % * * * % *
* * * * *k % * *

* * % % * * % *
* * * % % % * *

* * % % * * % *
* * * % %k % * *

* * % % * * % *
* % * % % % * *

* % % % * % % *
* * * % *k % * *

* % * % % % * *

1.34 Distinguish between the terms fatal error and non—fatal error. Why might you prefer to experience a fatal error rather than
a non—fatal error?
ANS: A fatal error causes a program to terminate prematurely. A nonfatal error occurs when the logic of the program is
incorrect, and the program does not work properly. A fatal error is preferred for debugging purposes. A fatal error imme-
diately lets you know there is a problem with the program, whereas a nonfatal error can be subtle and possibly go unde-
tected.

1.35 Here is a peek ahead. In this chapter you learned about integers and the type int. C++ can also represent uppercase letters,
lowercase letters and a considerable variety of special symbols. C++ uses small integers internally to represent each different char-
acter. The set of characters a computer uses and the corresponding integer representations for those characters is called that com-
puter’s character set. You can print a character by simply enclosing that character in single quotes as with

cout << 'A';
You can print the integer equivalent of a character using static_cast as follows:
cout << static_cast< int >('A');

This is called a cast operation (we formally introduce casts in Chapter 2). When the preceding statement executes, it prints the
value 65 (on systems that use the ASCII character set). Write a program that prints the integer equivalents of some uppercase let-
ters, lowercase letters, digits and special symbols. At a minimum, determine the integer equivalents of the following:A B C a b
c 012 $ * + / and the blank character.

1 // Exercise 1.35 Solution

2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6 wusing std::cin;

7

8 int main()

9 {

10 char symbol;

11

12 cout << "Enter a character: ";

13 cin >> symbol;

14

15 cout << symbol << "'s integer equivalent is "
16 << static_cast< int > (symbol) << endl;
17

18 return 0;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

12 Introduction to Computers and C++ Programming Solutions Chapter 1

19 3

Enter a character: A
A's integer equivalent is 65

1.36 Write a program that inputs a five-digit number, separates the number into its individual digits and prints the digits sepa-
rated from one another by three spaces each. (Hint: Use the integer division and modulus operators.) For example, if the user types

in 42339 the program should print

1 // Exercise 1.36 Solution

2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int num;

11

12 cout << "Enter a five-digit number: ";
13 cin >> num;

14

15 cout << num / 10000 << " "e
16 num = num % 10000;

17 cout << num / 1000 << " ",
18 num = num % 1000;

19 cout << num / 100 << " ",
20 num = num % 100;

21 cout << num / 10 << " "e
22 num = num % 10;

23 cout << num << endl;

24

25 return 0;

26)

Enter a five-digit number: 42339
4 2 3 3 9

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 1

1.37

Infroduction to Computers and C++ Programming Solutions

13

Using only the techniques you learned in this chapter, write a program that calculates the squares and cubes of the numbers

from O to 10 and uses tabs to print the following table of values:

E“
o
L]

ROV NoauUu WN RO
N
ul

0 100

cube

27
64

125
216
343
512
729
1000

NV OONOGBAWN—

// Exercise 1.37 Solution
#include <iostream>

using std::cout;
using std::endl;

int main()

{

int num;

num = 0;

cout << "\nnumber\tsquare\tcube\n"
<< num * num <<

<< num

num = num +
cout << num

num = num +
cout << num

num = num +
cout << num

num = num +
cout << num

num = num +
cout << num

num = num +
cout << num

num = num +
cout << num

num = num +
cout << num

num = num +
cout << num

num = num +
cout << num

<<

l\tl

l\tl

l\tl

l\tl

l\tl

l\tl

l\tl

l\tl

l\tl

l\tl

l\tl

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

num

num

num

num

num

num

num

num

num

num

* num

* num

* num

* num

* num

* num

* num

* num

* num

* num

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

l\tl

I\tl

I\tl

I\tl

I\tl

I\tl

I\tl

I\tl

I\tl

I\tl

I\tl

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

num

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

n \nll;

n \nll ;

n \nll ;

n \nll ;

n \nll ;

n \nll ;

n \nll ;

n \nll ;

n \nll ;

n \nll ;

endl;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

14 Introduction to Computers and C++ Programming Solutions Chapter 1

44
45 return 0;
46 }

1.38 Give a brief answer to each of the following “object think” questions:

a) Why does this text choose to discuss structured programming in detail before proceeding with an in-depth treatment of
object-oriented programming?

ANS: Objects are composed in part by structured program pieces.

b) What are the typical steps (mentioned in the text) of an object-oriented design process?

ANS: (1) Determine which objects are needed to implement the system. (2) Determine’s each object’s attributes. (3) Deter-

mine each object’s behaviors. (4) Determine the interaction between the objects.

¢) How is multiple inheritance exhibited by human beings?

ANS: Children. A child receives genes from both parents.

d) What kinds of messages do people send to one another?

ANS: People send messages through body language, speech, writings, email, telephones, etc.

e) Objects send messages to one another across well-defined interfaces. What interfaces does a car radio (object) present
to its user (a person object)?

ANS: Dials and buttons that allow the user to select a station, adjust the volume, adjust bass and treble, play a CD or tape,

etc.

1.39 You are probably wearing on your wrist one of the world’s most common types of objects—a watch. Discuss how each of
the following terms and concepts applies to the notion of a watch: object, attributes, behaviors, class, inheritance (consider, for ex-
ample, an alarm clock), abstraction, modeling, messages, encapsulation, interface, information hiding, data members and member
functions.
ANS: The entire watch is an object that is composed of many other objects (such as the moving parts, the band, the face,
etc.) Watch attributes are time, color, band, style (digital or analog), etc. The behaviors of the watch include setting the time
and getting the time. A watch can be considered a specific type of clock (as can an alarm clock). With that in mind, it is
possible that a class called Clock could exist from which other classes such as watch and alarm clock can inherit the basic
features in the clock. The watch is an abstraction of the mechanics needed to keep track of the time. The user of the watch
does not need to know the mechanics of the watch in order to use it; the user only needs to know that the watch keeps the
proper time. In this sense, the mechanics of the watch are encapsulated (hidden) inside the watch. The interface to the watch
(its face and controls for setting the time) allows the user to set and get the time. The user is not allowed to directly touch
the internal mechanics of the watch. All interaction with the internal mechanics is controlled by the interface to the watch.
The data members stored in the watch are hidden inside the watch and the member functions (looking at the face to get the
time and setting the time) provide the interface to the data.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Control
Structures
Solutions

Solutions

Exercises 2.14 through 2.38 correspond to Sections 2.1 through 2.12.
Exercises 2.39 through 2.63 correspond to Sections 2.13 through 2.21.

2.14 Identify and correct the error(s) in each of the following:
a) if (age >= 65);
cout << "Age is greater than or equal to 65" << endl;
else
cout << "Age is less than 65 << endl";
ANS: The semicolon at the end of the i £ should be removed. The closing double quote after the second endl should be
placed after 65.
b) if (age >= 65)
cout << "Age is greater than or equal to 65" << endl;
else;
cout << "Age is less than 65 << endl";
ANS: The semicolon after the else should be removed. The closing double quote after the second endl should be placed
after 65.
¢) int x = 1, total;
while (x <= 10) {
total += x;
++X;
}
ANS: Variable total should be initialized to 0.
d) while (x <= 100)
total += x;
++3x;
ANS: The Win while should be lowercase. The while’s body should be enclosed in braces {}.
e) while (y > 0) {
cout << y << endl;
++Y;
}
ANS: The variable y should be decremented (i.e., --y;) not incremented (++y;).

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

16 Control Structures Solutions Chapter 2

2.15 What does the following program print?

1 #include <iostream>

2

3 using std::cout;

4 using std::endl;

5

6 int main()

7 {

8 int vy, x = 1, total = 0;
9

10 while (x <= 10) {
11 Yy = x * x;

12 cout << y << endl;
13 total += y;

14 ++X;

15 }

16

17 cout << "Total is " << total << endl;
18 return 0;

19 3

1

4

9

16

25

36

49

64

81

100

Total is 385

For Exercises 2.16 to 2.19, perform each of these steps:
a) Read the problem statement.
b) Formulate the algorithm using pseudocode and top-down, stepwise refinement.
¢) Write a C++ program.
d) Test, debug and execute the C++ program.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2 Control Structures Solutions 17

2.16 Drivers are concerned with the mileage obtained by their automobiles. One driver has kept track of several tankfuls of gas-
oline by recording miles driven and gallons used for each tankful. Develop a C++ program that will input the miles driven and gal-
lons used for each tankful. The program should calculate and display the miles per gallon obtained for each tankful. After processing
all input information, the program should calculate and print the combined miles per gallon obtained for all tankfuls.

Enter the gallons used (-1 to end): 12.8

Enter the miles driven: 287

The miles / gallon for this tank was 22.421875
Enter the gallons used (-1 to end): 10.3

Enter the miles driven: 200

The miles / gallon for this tank was 19.417475
Enter the gallons used (-1 to end): 5

Enter the miles driven: 120

The miles / gallon for this tank was 24.000000
Enter the gallons used (-1 to end): -1

The overall average miles/gallon was 21.601423

ANS:
Top:

First refinement:

Second refinement:

// Exercise 2.16 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

NOOhAhWN —

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

18 Control Structures Solutions Chapter 2

8 int main()

9 {

10 double gallons, miles, totalGallons = 0.0,

11 totalMiles = 0.0, average;

12

13 cout << "Enter the gallons used (-1 to end): ";
14 cin >> gallons;

15

16 while (gallons != -1.0) {

17 totalGallons += gallons;

18

19 cout << "Enter the miles driven: ";

20 cin >> miles;

21 totalMiles += miles;

22

23 cout << "The Miles / Gallon for this tank was "
24 << miles / gallons

25 << "\n\nEnter the gallons used (-1 to end): ";
26 cin >> gallons;

27 }

28

29 average = totalMiles / totalGallons;

30 cout << "\nThe overall average Miles/Gallon was "
31 << average << endl;

32

33 return 0;

34 }

Enter the gallons used (-1 to end): 16
Enter the miles driven: 220
The Miles / Gallon for this tank was 13.75

Enter the gallons used (-1 to end): 16.5
Enter the miles driven: 272
The Miles / Gallon for this tank was 16.4848

Enter the gallons used (-1 to end): -1

The overall average Miles/Gallon was 15.1385

2.17 Develop a C++ program that will determine if a department store customer has exceeded the credit limit on a charge ac-
count. For each customer, the following facts are available:

a) Account number (an integer)

b) Balance at the beginning of the month

¢) Total of all items charged by this customer this month

d) Total of all credits applied to this customer's account this month

e) Allowed credit limit

The program should input each of these facts, calculate the new balance (= beginning balance + charges — credits) and deter-
mine if the new balance exceeds the customer's credit limit. For those customers whose credit limit is exceeded, the program
should display the customer's account number, credit limit, new balance and the message “Credit limit exceeded”.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2 Control Structures Solutions 19

Enter account number (-1 to end): 100
Enter beginning balance: 5394.78
Enter total charges: 1000.00

Enter total credits: 500.00

Enter credit limit: 5500.00

Account: 100
Credit limit: 5500.00
Balance: 5894.78

Credit Limit Exceeded.

Enter account number (-1 to end): 200
Enter beginning balance: 1000.00
Enter total charges: 123.45

Enter total credits: 321.00

Enter credit limit: 1500.00

Enter account number (-1 to end): 300
Enter beginning balance: 500.00
Enter total charges: 274.73

Enter total credits: 100.00

Enter credit limit: 800.00

Enter account number (-1 to end): -1

ANS:

Top:

First refinement:

Second refinement:

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

20 Control Structures Solutions

Chapter 2

VOO NOGBTAWN —

// Exercise 2.17 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;
using std::ios;

#include <iomanip>

using std::setprecision;
using std::setiosflags;

int main()

{

int accountNumber;
double balance, charges, credits, limit;

cout << "Enter account number (-1 to end): "
<< setiosflags(ios::fixed | ios::showpoint);
cin >> accountNumber;

while (accountNumber != -1) {
cout << "Enter beginning balance: ";
cin >> balance;
cout << "Enter total charges: ";
cin >> charges;
cout << "Enter total credits: ";
cin >> credits;
cout << "Enter credit limit: ";
cin >> limit;
balance += charges - credits;

if (balance > limit)

cout << "Account: " << accountNumber
<< "\nCredit limit: " << setprecision(2) << limit
<< "\nBalance: " << setprecision(2) << balance

<< "\nCredit Limit Exceeded.\n";

cout << "\nEnter account number (-1 to end): ";

cin >> accountNumber;
}

cout << endl; // ensure all output is displayed

return 0;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2 Control Structures Solutions 21

Enter account number (-1 to end): 88
Enter beginning balance: 900.57
Enter total charges: 324.78

Enter total credits: 100

Enter credit limit: 1500

Enter account number (-1 to end): 89
Enter beginning balance: 2789.65
Enter total charges: 1540.55

Enter total credits: 25

Enter credit limit: 1500

Account: 89
Credit limit: 1500.00
Balance: 4305.20

Credit Limit Exceeded.

Enter account number (-1 to end): -1

2.18 One large chemical company pays its salespeople on a commission basis. The salespeople receive $200 per week plus 9
percent of their gross sales for that week. For example, a salesperson who sells $5000 worth of chemicals in a week receives $200
plus 9 percent of $5000, or a total of $650. Develop a C++ program that will input each salesperson's gross sales for last week and
calculate and display that salesperson's earnings. Process one salesperson's figures at a time.

Enter sales in dollars (-1 to end): 5000.00
Salary is: $650.00

Enter sales in dollars (-1 to end): 6000.00
Salary is: $740.00

Enter sales in dollars (-1 to end): 7000.00
Salary is: $830.00

Enter sales in dollars (-1 to end): -1

ANS:
Top:

First refinement:

Second refinement:

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

22 Control Structures Solutions

Chapter 2

// Exercise 2.18 Solution
#include <iostream>

using std::cout;
using std::cin;

using std::ios;

#include <iomanip>

VOO NOGBTAWN —

10 using std::setprecision;
11 using std::setiosflags;

13 int main()

14 {

15 double sales, wage;

16

17 cout << "Enter sales in dollars (-1 to end): "

18 << setiosflags(ios::fixed | ios::showpoint);
19 cin >> sales;

20

21 while (sales != -1.0) {

22 wage = 200.0 + 0.09 * sales;

23 cout << "Salary is: $" << setprecision(2) << wage
24 << "\n\nEnter sales in dollars (-1 to end):
25 cin >> sales;

26 }

27

28 return 0;

29

Enter sales in dollars (-1 to end):
Salary is: $830.00

Enter sales in dollars (-1 to end):
Salary is: $245.00

Enter sales in dollars (-1 to end):

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

7000

500

-1

Chapter 2 Control Structures Solutions 23

2.19 Develop a C++ program that will determine the gross pay for each of several employees. The company pays “straight-time”
for the first 40 hours worked by each employee and pays “time-and-a-half” for all hours worked in excess of 40 hours. You are
given a list of the employees of the company, the number of hours each employee worked last week and the hourly rate of each
employee. Your program should input this information for each employee and should determine and display the employee's gross

pay.

Enter hours worked (-1 to end): 39
Enter hourly rate of the worker ($00.00): 10.00
Salary is $390.00

Enter hours worked (-1 to end): 40

Enter hourly rate of the worker ($00.00): 10.00
Salary is $400.00

Enter hours worked (-1 to end): 41

Enter hourly rate of the worker ($00.00): 10.00
Salary is $415.00

Enter hours worked (-1 to end): -1

ANS:
Top:

Second refinement:

// Exercise 2.19 Solution
#include <iostream>

using std::cout;
using std::cin;

using std::ios;

#include <iomanip>

NVOONOGTTBAWN —

10 using std::setprecision;
11 using std::setiosflags;

12

13 int main()

14 {

15 double hours, rate, salary;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

24 Control Structures Solutions Chapter 2

16

17 cout << "Enter hours worked (-1 to end): "

18 << setiosflags(ios::fixed | ios::showpoint);

19 cin >> hours;

20

21 while (hours != -1.0) {

22 cout << "Enter hourly rate of the worker ($00.00): ";
23 cin >> rate;

24

25 if (hours <= 40)

26 salary = hours * rate;

27 else

28 salary = 40.0 * rate + (hours - 40.0) * rate * 1.5;
29

30 cout << "Salary is $" << setprecision(2) << salary
31 << "\n\nEnter hours worked (-1 to end): ";

32 cin >> hours;

33 }

34

35 return 0;

36 1}

Enter hours worked (-1 to end): 40
Enter hourly rate of the worker ($00.00): 10
Salary is $400.00

Enter hours worked (-1 to end): 50
Enter hourly rate of the worker ($00.00): 10
Salary is $550.00

Enter hours worked (-1 to end): -1

2.20 The process of finding the largest number (i.e., the maximum of a group of numbers) is used frequently in computer appli-
cations. For example, a program that determines the winner of a sales contest would input the number of units sold by each sales-
person. The salesperson who sells the most units wins the contest. Write a pseudocode program, then a C++ program that inputs a
series of 10 numbers, and determines and prints the largest of the numbers. Hint: Your program should use three variables, as fol-
lows:

counter: A counter to count to 10 (i.e., to keep track of how many numbers have
been input and to determine when all 10 numbers have been processed).

number: The current number input to the program.

largest: The largest number found so far.

1 // Exercise 2.20 solution

2 #include <iostream>

3

4 using std::cout;

5 wusing std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int counter = 0, number, largest;
11

12 cout << "Enter the first number: ";
13 cin >> largest;

14

15 while (++counter < 10) {

16 cout << "Enter the next number : ";

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2

Control Structures Solutions 25

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

cin >> number;

if (number > largest)

}

largest = number;

cout << "Largest is " << largest << endl;

return 0;

the
the
the
the
the
the
the
the
the
the

first number:
next number
next number
next number
next number
next number
next number
next number
next number
next number

Largest is 99

78
19
99
33
22
10

88
22
34

2.21 Write a C++ program that utilizes looping and the tab escape sequence \t to print the following table of values:

N 10*N 100*N 1000*N

1 10 100 1000

2 20 200 2000

3 30 300 3000

4 40 400 4000

5 50 500 5000

1 // Exercise 2.21 Solution

2 #include <iostream>

3

4 using std::cout;

5 wusing std::endl;

6

7 int main()

8 {

9 int n = 0;

10

11 cout << "N\tl1l0 * N\tl100 * N\t1000 * N\n\n";
12

13 while (++n <= 5)

14 cout << n << '"\t' << 10 * n << '\t' << 100 * n
15 << "\t' << 1000 * n << '\n';
16

17 cout << endl;

18

19 return 0;

20)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

26 Control Structures Solutions Chapter 2

N 10 * N 100 * N 1000 * N
1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000

2.22 Using an approach similar to Exercise 2.20, find the two largest values among the 10 numbers. Note: You must input each
number only once.

1 // Exercise 2.22 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int counter = 0, number, largest, secondLargest = 0;
11

12 cout << "Enter the first number: ";
13 cin >> largest;

14

15 while (++counter < 10) {

16 cout << "Enter next number: ";
17 cin >> number;

18

19 if (number > largest) {

20 secondLargest = largest;

21 largest = number;

22 }

23 else if (number > secondLargest)
24 secondLargest = number;

25 }

26

27 cout << "\nLargest is " << largest
28 << "\nSecond largest is " << secondLargest << endl;
29

30 return 0;
31 1}

Enter the first number: 77
Enter next number: 33
Enter next number: 44
Enter next number: 73
Enter next number: 79
Enter next number: 45
Enter next number: 2

Enter next number: 22
Enter next number: 21
Enter next number: 8

Largest is 79
Second largest is 77

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2 Control Structures Solutions 27

2.23 Modify the program in Fig. 2.11 to validate its inputs. On any input, if the value entered is other than 1 or 2, keep looping
until the user enters a correct value.

1 // Exercise 2.23 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int passes = 0, failures = 0, student = 0, result;
11

12 while (++student <= 10) {

13 cout << "Enter result (l=pass, 2=fail): ";
14 cin >> result;

15

16 while (result != 1 && result != 2) {
17 cout << "Invalid result"
18 << "\nEnter result (l=pass, 2=fail): ";
19 cin >> result;

20 }

21

22 if (result == 1)

23 ++passes;

24 else

25 ++failures;

26 }

27

28 cout << "Passed: " << passes
29 << "\nFailed: " << failures;
30

31 if (passes >= 8)

32 cout << "\nRaise tuition\n";
33

34 cout << endl;

35

36 return 0;

37 1}

Enter result (l=pass, 2=fail): 1
Enter result (l=pass, 2=fail): 4
Invalid result

Enter result (l=pass, 2=fail): 1
Enter result (l=pass, 2=fail): 1
Enter result (l=pass, 2=fail): 5
Invalid result

Enter result (l=pass, 2=fail): 2
Enter result (l=pass, 2=fail): 1
Enter result (l=pass, 2=fail): 1
Enter result (l=pass, 2=fail): 1
Enter result (l=pass, 2=fail): 2
Enter result (l=pass, 2=fail): 2
Enter result (l=pass, 2=fail): 2

Passed: 6
Failed: 4

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

28 Control Structures Solutions Chapter 2

2.24 What does the following program print?

1 #include <iostream>
2

3 using std::cout;

4 using std::endl;

5

6 int main()

7 {

8 int count = 1;

9

10 while (count <= 10) {
11 cout << (count % 2 ? Mk*kIN o Wi pi44n)
12 << endl;
13 ++count;

14 }

15

16 return 0;

17 1}

* %k %k %k

FRFRPRRrR.

* %k k%

e+

* % %k %

s

* %k %k %k

FRFRPRRrR.

* %k k%

e+

2.25 What does the following program print?

1 #include <iostream>

2

3 using std::cout;

4 using std::endl;

5

6 int main()

7 {

8 int row = 10, column;
9

10 while (row >= 1) {
11 column = 1;

12

13 while (column <= 10) {
14 cout << (row % 2 ? "<" : uwyw),
15 ++column;

16 }

17

18 --row;

19 cout << endl;

20 }

21

22 return 0;

23)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2

S555555>>>
<<
S5555555>>>
<<
25555555>>
<<
S555555>>>
<<
S5555555>>>
<<

Control Structures Solutions 29

2.26 (Dangling Else Problem) Determine the output for each of the following when x is 9 and y is 11 and when x is 11 andy
is 9. Note that the compiler ignores the indentation in a C++ program. Also, the C++ compiler always associates an else with the
previous if unless told to do otherwise by the placement of braces {}. Because, on first glance, the programmer may not be sure
which 1f an else matches, this is referred to as the “dangling else” problem. We have eliminated the indentation from the follow-
ing code to make the problem more challenging. (Hint: Apply indentation conventions you have learned.)

a) if (x < 10)
if (y > 10)
cout << MWkEkkkkn
else
cout << "###H##"

cout << "$SSSSm
ANS: x=9,y=11

*kkkk

$9%5%

b) if (x < 10) {
if (y > 10)
cout << Mkkkkkn

}

else {
cout << "H#HHHH"
cout << "SSSS"

}

ANS: x=11,y=9

#HH
$$6%%

<< endl;

<< endl;
<< endl;

<< endl;

<< endl;
<< endl;

2.27 (Another Dangling Else Problem) Modify the following code to produce the output shown. Use proper indentation tech-
niques. You must not make any changes other than inserting braces. The compiler ignores indentation in a C++ program. We have
eliminated the indentation from the following code to make the problem more challenging. Note: It is possible that no modification

is necessary.

if (y ==8))
if (x == 5)

cout
else
cout
cout
cout

<< "@eree@"
<< "HHH#HHE"
<< "EESEs
<< "&&&E&EE"

©2000. Deitel & Associates, Inc. and Prentice Hall.

<< endl;
<< endl;

<< endl;
<< endl;

All Rights Reserved.

30 Control Structures Solutions Chapter 2

a) Assumingx = 5 and y = 8, the following output is produced.

[clciclelcy
5565
&&&&&
ANS:
1 if (y == 8)
2 if ((x == 5)
3 cout << "@@E@@@\n";
4 else
5 cout << "#####\n";
6
7 cout << "$$$$3$\n";
8 cout << "g&&&&\n";

b) Assumingx = 5 and y = 8, the following output is produced.

[clciclelcy

ANS:
1 if (y == 8)
2 if ((x == 5)
3 cout << "@@@@@\n";
4 else {
5 cout << "#####\n";
6 cout << "$$$$5\n";
7 cout << "&&&&&\n";
8 }

¢) Assumingx = 5 and y = 8, the following output is produced.

[clciclelcy
& &&&&
ANS:
I if (y ==18)
2 if (x == 5)
3 cout << "@E@ERERA\n";
4 else {
5 cout << "#####\n";
6 cout << "$$$$4\n";
7 }
8
9 cout << "&&&&&\n";

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2 Control Structures Solutions 31

d) Assumingx =5 andy = 7, the following output is produced. Note: The last three output statements after the else are
all part of a compound statement.

#####
$655%
S&& & &

ANS:
1 if (y ==8) {
2 if ((x == 5)
3 cout << "@ERERE@E@\n";
4
5 else {
6 cout << "#####\n";
7 cout << "$$44s\n";
8 cout << "&&&&&\n";
9 13}

2.28 Write a program that reads in the size of the side of a square and then prints a hollow square of that size out of asterisks and
blanks. Your program should work for squares of all side sizes between 1 and 20. For example, if your program reads a size of 5, it
should print

%* %k %k k%

* *

* *

* *

* %k %k k%

1 // Exercise 2.28 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int side, rowPosition, size;
11

12 cout << "Enter the square side: ";
13 cin >> side;

14

15 size = side;

16

17 while (side > 0) {

18 rowPosition = size;

19
20 while (rowPosition > 0) {
21
22 if (size == side || side == 1 || rowPosition == 1 ||
23 rowPosition == size)
24
25 cout << '*';
26 else

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

32 Control Structures Solutions Chapter 2

cout << ' ';

--rowPosition;

}
cout << '\n';
--side;

}

cout << endl;

return 0;

Enter the square side: 8
*kkkkkkk

*

*
*
*
*
*
*

*kkkkk

*

*
*
*
*
*
*

2.29 A palindrome is a number or a text phrase that reads the same backwards as forwards. For example, each of the following
five-digit integers is a palindrome: 12321, 55555, 45554 and 11611. Write a program that reads in a five-digit integer and determines
whether it is a palindrome. (Hint: Use the division and modulus operators to separate the number into its individual digits.)

NV OoONOGBAWN—

// Exercise 2.29 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

int main()

{

int number, firstDigit, secondDigit, fourthDigit, fifthDigit;

cout << "Enter a five-digit number: ";
cin >> number;

firstDigit = number / 10000;

secondDigit number % 10000 / 1000;
fourthDhigit number % 10000 % 1000 % 100 / 10;
fifthDigit = number % 10000 % 1000 % 10;

if (firstDigit == fifthDigit && secondDigit == fourthDigit)
cout << number << " is a palindrome" << endl;

else
cout << number << " is not a palindrome" << endl;

return 0;

Enter a five-digit number: 57475
57475 is a palindrome

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2 Control Structures Solutions 33

2.30 Input an integer containing only Os and 1s (i.e., a “binary” integer) and print its decimal equivalent. (Hint: Use the modulus
and division operators to pick off the “binary” number’s digits one at a time from right to left. Just as in the decimal number system
where the rightmost digit has a positional value of 1 and the next digit left has a positional value of 10, then 100, then 1000, etc., in
the binary number system, the rightmost digit has a positional value of 1, the next digit left has a positional value of 2, then 4, then
8, etc. Thus the decimal number 234 can be interpreted as 4 * 1 + 3 * 10 + 2 * 100. The decimal equivalent of binary 1101 is 1 * 1
+0*2+1*4+1*8or1+0+4+8,0r13.)

1 // Exercise 2.30 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int binary, number, decimal = 0, highBit = 16, factor = 10000;
11

12 cout << "Enter a binary number (5 digits maximum): ";
13 cin >> binary;

14

15 number = binary;

16

17 while (highBit >= 1) {

18 decimal += binary / factor * highBit;

19 highBit /= 2;

20 binary %= factor;

21 factor /= 10;

22 }

23

24 cout << "The decimal equivalent of "

25 << number << " is " << decimal << endl;
26

27 return 0;

28

Enter a binary number (5 digits maximum): 10010
The decimal equivalent of 10010 is 18

2.31 Write a program that displays the following checkerboard pattern

* * % * * * * %
* * * * * * * *
* * % % * * % %
* * * * * * * *
* * % %k * * * %
* % * * * * * *
* * % * * * * %
* * * * * * * *

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

34 Control Structures Solutions Chapter 2

Your program must use only three output statements, one of each of the following forms:

cout << "* nu,;
cout << ' ';
cout << endl;

1 // Exercise 2.31 Solution
2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 int main()

8 {

9 int side = 8, row;

10

11 while (side-- > 0) {
12 row = 8;

13

14 if (side % 2 == 0)
15 cout << ' ';

16

17 while (row-- > 0)
18 cout << "* w;

19
20 cout << '\n';
21 }
22
23 cout << endl;
24
25 return 0;
26)

* * % %k * % % *
* * * * * * * *
* * % %k * * % *
* * * % % % * *
* * % * * * * *
* * * %k *k * * %
* * % %k * % % *
* * * * * * * *

2.32 Write a program that keeps printing the multiples of the integer 2, namely 2, 4, 8, 16, 32, 64, etc. Your loop should not
terminate (i.e., you should create an infinite loop). What happens when you run this program?

// Exercise 2.32 Solution
#include <iostream>

using std::cout;
using std::endl;

int main()
{
int multiple = 1;

while (multiple *= 2)
cout << multiple << "\n";

BWN—-OVOVONOCOIAWN—

cout << endl;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2

Control Structures Solutions 35

15
16
17

2
4

return 0;

}

32768
65536
131072
262144
524288
1048576
2097152
4194304
8388608
16777216
33554432
67108864
134217728
268435456
536870912
1073741824
-2147483648

2.33 Write a program that reads the radius of a circle (as a double value) and computes and prints the diameter, the circumfer-
ence and the area. Use the value 3.14159 for p.

BRWN—=0O0OVONOCORAWN-—

15

// Exercise 2.33 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

int main()

cout << "The diameter is " << radius * 2.0
<< "\nThe circumference is " << 2.0 * pi * radius

pi = 3.14159;

the radius:

.
I

<< "\nThe area is " << pi * radius * radius << endl;

{
double radius,
cout << "Enter
cin >> radius;
return 0;

}

Enter the radius: 5
The diameter is 10
The circumference is 31.4159
The area is 78.5397

2.34 What's wrong with the following statement? Provide the correct statement to accomplish what the programmer was prob-
ably trying to do.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

36 Control Structures Solutions Chapter 2

cout << ++(x + y);
ANS: The ++ operator must be used in conjuction with variables. The programmer probably intended to write the state-
ment; cout<< x + y + 1;.

2.35 Write a program that reads three nonzero double values and determines and prints if they could represent the sides of a
right triangle.

1 // Exercise 2.35 Solution

2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 double a, b, c;

11

12 cout << "Enter three floating point numbers: ";
13 cin >> a >> b >> c;

14

15 if (c*c==a *a+Db*Db)

16 cout << "The three numbers could"

17 << " be sides of a right triangle" << endl;
18 else

19 cout << "The three numbers probably"

20 << " are not the sides of a right triangle" << endl;
21

22 return 0;

23 }

Enter three floating point numbers: 4.5 7.7 6.6
The three numbers probably are not the sides of a right triangle

2.36 Write a program that reads three nonzero integers and determines and prints if they could be the sides of a right triangle.

1 // Exercise 2.36 Solution

2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int a, b, c;

11

12 do {

13 cout << "Enter three integers: ";

14 cin >> a >> b >> c;

15 } while (a <=0 || b<=0 || ¢ <=0);
16

17 if (c *c==a *a+Db*Db)

18 cout << "The three integers are the"

19 << " gides of a right triangle\n";
20 else

21 cout << "The three integers are not the"
22 << " gides of a right triangle\n";
23

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2

Control Structures Solutions 37

24 cout << endl;
25

26 return 0;

27

Enter three integers: 3 4 5

The three integers are the sides of a right triangle

2.37 A company wants to transmit data over the telephone, but they are concerned that their phones may be tapped. All of their
data are transmitted as four-digit integers. They have asked you to write a program that encrypts their data so that it can be trans-
mitted more securely. Your program should read a four-digit integer and encrypt it as follows: Replace each digit by (the sum of
that digit plus 7) modulus 10. Then, swap the first digit with the third, swap the second digit with the fourth and print the encrypted
integer. Write a separate program that inputs an encrypted four-digit integer and decrypts it to form the original number.

1 // Exercise 2.37 Part A Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int first, second, third, fourth, digit, temp;
11 int encryptedNumber;

12

13 cout << "Enter a four digit number to be encrypted: ";
14 cin >> digit;

15

16 first = (digit / 1000 + 7) % 10;

17 second = (digit % 1000 / 100 + 7) % 10;

18 third = (digit % 1000 % 100 / 10 + 7) %

19 fourth = (digit % 1000 % 100 % 10 + 7) %

20

21 temp = first;

22 first = third * 1000;

23 third = temp * 10;

24

25 temp = second;

26 second = fourth * 100;

27 fourth = temp * 1;

28

29 encryptedNumber = first + second + third + fourth;
30 cout << "Encrypted number is " << encryptedNumber << endl;
31

32 return 0;

33 1}

Enter a four digit number to be encrypted: 1009
Encrypted number is 7687

// Exercise 2.37 Part B Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

COBAWN—

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

38 Control Structures Solutions

Chapter 2

int main()

{

int first, second, third, fourth, decrypted, temp, num;

cout << "Enter a four digit encrypted number: ";
cin >> num;

first = num / 1000;

second = num % 1000 / 100;
third = num % 1000 % 100 / 10;
fourth = num % 1000 % 100 % 10;

temp = (first + 3) % 10;
first = (third + 3) % 10;
third = temp;

[

0

temp = second + 3 A
+ % 10;

(
second = (fourth
fourth = temp;

%
)

)
3

decrypted = first * 1000 + second * 100 + third * 10
cout << "Decrypted number is " << decrypted << endl;

return 0;

Enter a four digit encrypted number: 7687
Decrypted number is 1009

2.38 The factorial of a nonnegative integer n is written n! (pronounced ‘7 factorial”) and is defined as follows:

and

nl=n-(m-1)-(n-2)-...-1 (for values of n greater than or equal to 1)

n!=1 (for n=0).

For example, 5! =5-4-3 -2 1, which is 120.
a) Write a program that reads a nonnegative integer and computes and prints its factorial.

b) Write a program that estimates the value of the mathematical constant e by using the formula:

e=1+l+l+l+1/4
121 3!

¢) Write a program that computes the value of e* by using the formula

2 3
F=1+2 4+ 44y,
1 21 3!

+ fourth;

N=0V0VONOCORAWN —

// Exercise 2.38 Part A Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

int main()

{

int n = 0, number;
unsigned factorial = 1;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2

Control Structures Solutions 39

13 do {

14 cout << "Enter a positive integer: ";
15 cin >> number;

16 } while (number < 0);

17

18 while (n++ < number)

19 factorial *=n == 0 ? 1 : n;

20

21 cout << number << "! is " << factorial << endl;
22

23 return 0;

24)

Enter a positive integer: 8
8! is 40320

1 // Exercise 2.38 Part B Solution
2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 int main()

8 {

9 int n = 0, fact = 1, accuracy = 10;
10 double e = 1;

11

12 while (++n < accuracy) {

13 fact *= n;

14 e += 1.0 / fact;

15 }

16

17 cout << "e is " << e << endl;
18

19 return 0;

20)

e is 2.71828

// Exercise 2.38 Part C Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;
using std::ios;

NVOONOGTA WN—

#include <iomanip>

10 using std::setw;

11 using std::setprecision;
12 using std::setiosflags;

13

14 int main()

15 {

16 int n = 0, accuracy = 15, x = 3.0, times = 0, count;
17 double e = 1.0, exp = 0.0, fact = 1.0;

18

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

40 Control Structures Solutions Chapter 2

19 while (n++ <= accuracy) {

20 count = n;

21 fact *= n ==0? 1.0 : n;

22

23 while (times < count) {

24

25 if (times == 0)

26 exp = 1.0;

27

28 exp *= x;

29 ++times;

30 }

31

32 e += exp / fact;

33 }

34

35 cout << setiosflags(ios::fixed | ios::showpoint)
36 << "e raised to the " << x << " power is "
37 << setprecision(4) << e << endl;
38

39 return 0;

40 3

e raised to the 3 power is 20.0855

2.39 Find the error(s) in each of the following:
a) For (x = 100, x >= 1, x++)
cout << x << endl;
ANS: For should be for. The commas should be semicolons. The ++ should be a decrement such as --.
b) The following code should print whether integer value is odd or even:
switch (value % 2) {
case 0:
cout << "Even integer" << endl;
case 1:
cout << "Odd integer" << endl;
}
ANS: case 0needs a break statement.
¢) The following code should output the odd integers from 19 to 1:
for (x = 19; x >= 1; x += 2)
cout << x << endl;
ANS: +=should be -=.
d) The following code should output the even integers from 2 to 100:
counter = 2;
do {
cout << counter << endl;
counter += 2;
} While (counter < 100);
ANS: While should be while. Operator < should be <=.

2.40 Write a program that sums a sequence of integers. Assume that the first integer read specifies the number of values remain-
ing to be entered. Your program should read only one value per input statement. A typical input sequence might be

5 100 200 300 400 500

where the 5 indicates that the subsequent 5 values are to be summed.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2 Control Structures Solutions 41

1 // Exercise 2.40 Solution

2 #include <iostream>

3

4

5 using std::cout;

6 using std::endl;

7 using std::cin;

8

9 int main()

10 ¢

11 int sum = 0, number, value;

12

13 cout << "Enter the number of values to be processed: ";
14 cin >> number;

15

16 for (int i = 1; i <= number; i++) {
17 cout << "Enter a value: ";

18 cin >> value;

19 sum += value;
20 }
21
22 cout << "Sum of the " << number << " values is "
23 << sum << endl;
24
25 return 0;
26)

Enter the number of values to be processed: 3
Enter a value: 7

Enter a value: 8

Enter a value: 9

Sum of the 3 values is 24

2.41 Write a program that calculates and prints the average of several integers. Assume the last value read is the sentinel 9999.
A typical input sequence might be

10 8 11 7 9 9999

indicating that the average of all the values preceding 9999 is to be calculated.

1 // Exercise 2.41 Solution

2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int value, count = 0, total = 0;
11

12 cout << "Enter an integer (9999 to end): ";
13 cin >> value;

14

15 while (value != 9999) {

16 total += value;

17 ++count;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

42 Control Structures Solutions

Chapter 2

18

19

20

21

22

23

24

25

26

27

28

29
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

cout << "Enter next integer (9999 to end): ";

cin >> value;

<< static_cast< double > (total) / count << endl;

}
if (count != 0)

cout << "\nThe average is: "
else

cout << "\nNo values were entered."

return 0;

an integer (9999 to end):

The average is: 60.75

2.42 What does the following program do?

88
next integer (9999 to end):
next integer (9999 to end):
next integer (9999 to end):
next integer (9999 to end):
next integer (9999 to end):
next integer (9999 to end):
next integer (9999 to end):
next integer (9999 to end):

65
77
43
90
45
76

2
9999

<< endl;

{

NV OoONOGBAWN—

Enter two integers in the range of 1-20:

eee
eee
eee
eee

#include <iostream>
using std::cout;
using std::cin;

using std::endl;

int main()

int x, v;

cout << "Enter two integers in the range 1-20:

cin >> x >> y;
for (int i = 1; i <= y;

for (int j =
cout << '@’

cout << endl;
}

return 0;

i++)

x;

e+)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

L
I

Chapter 2

Control Structures Solutions 43

2.43 Write a program that finds the smallest of several integers. Assume that the first value read specifies the number of values
remaining and that the first number is not one of the integers to compare.

VOO NOGBTAWN —

{

Enter
Enter
Enter
Enter
Enter
Enter

// Exercise 2.43 Solution
#include <iostream>

using std::cout;
using std::endl;

using std::cin;

int main()

int number, value, smallest;

cout << "Enter the number of integers to be processed:
cin >> number;
cout << "Enter an integer: ";
cin >> smallest;
for (int i = 2; i <= number; i++) {
cout << "Enter next integer: ";
cin >> value;

if (value < smallest)
smallest = value;

}

cout << "\nThe smallest integer is: " << smallest << endl;

return 0;

the number of integers to be processed: 5
an integer: 5
next integer:
next integer:
next integer:
next integer:

0 R Wik

The smallest integer is: 1

2.44 Write a program that calculates and prints the product of the odd integers from 1 to 15.

{

NVOONOGTA WN —

// Exercise 2.44 Solution
#include <iostream>

using std::cout;
using std::endl;

int main()

long product = 1;

for (long i = 3; i <= 15; 1 += 2)
product *= i;

cout << "Product of the odd integers from 1 to 15 is:
<< product << endl;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

44 Control Structures Solutions Chapter 2

17 return 0;
18 3}

Product of the odd integers from 1 to 15 is: 2027025

2.45 The factorial function is used frequently in probability problems. The factorial of a positive integer n (written n/ and pro-
nounced “n factorial”) is equal to the product of the positive integers from 1 to n. Write a program that evaluates the factorials of
the integers from 1 to 5. Print the results in tabular format. What difficulty might prevent you from calculating the factorial of 20?7

1 // Exercise 2.45 Solution

2 #include <iostream>

3

4 using std::cout;

5 wusing std::endl;

6

7 int main()

8 {

9 int factorial;
10
11 cout << "X\tFactorial of X\n";
12
13 for (int i = 1; i <= 5; ++1i) {
14 factorial = 1;
15
16 for (int j = 1; 7 <= 1i; ++3)
17 factorial *= j;

18

19 cout << i << '\t' << factorial << '\n';
20 }
21
22 cout << endl;
23 return 0;
24 1%

X Factorial of X

1 1

2 2

3 6

4 24

5 120

2.46 Modify the compound interest program of Section 2.15 to repeat its steps for interest rates of 5 percent, 6 percent, 7 percent,
8 percent, 9 percent and 10 percent. Use a for loop to vary the interest rate.

// Exercise 2.46 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;
using std::ios;

#include <iomanip>

using std::setw;
using std::setprecision;

N—=0VONOCOEA WN—

—

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2 Control Structures Solutions 45

13 using std::setiosflags;
15 #include <cmath>

17 int main()
18 ¢
19 double amount, principal = 1000.00;

21 cout << setiosflags(ios::fixed | ios::showpoint);

23 for (int rate = 5; rate <= 10; rate++) {
24 cout << "Interest Rate: " << setprecision(2) << rate / 100.0
25 << "\nYear\tAmount on deposit\n";

27 for (int year = 1; year <= 10; year++) {
28 amount = principal * pow(1 + (rate / 100.0), year);
29 cout << year << '\t' << setprecision(2) << amount << '\n';

32 cout << '\n';
33 }

35 cout << endl;

37 return 0;

Interest Rate: 0.10
Year Amount on deposit
1100.00
1210.00
1331.00
1464.10
1610.51
1771.56
1948.72
2143.59
2357.95
2593.74

VoSN WNPR

[y
o

2.47 Write a program that prints the following patterns separately one below the other. Use £or loops to generate the patterns.
All asterisks (*) should be printed by a single statement of the form cout << '*'; (this causes the asterisks to print side by
side). Hint: The last two patterns require that each line begin with an appropriate number of blanks. Extra credit: Combine your code
from the four separate problems into a single program that prints all four patterns side by side by making clever use of nested for
loops.

A) (B) © D)

* khkkkkkkkkk khkkkkkkkkk *
* % khkkkkkkkk kkkkkkkkk * %
* k% khkkkkkk*k *khkkkhkkkk * %%
* k% k X XXX X *kkkkkk * %k Kk
*kkkk *kkkk*k *kkkkk *kkk*
*hkkkkk *hkkkk *hkkkk *khkkkkk
kkkkkk*k * k k% * k k% khkkkkkk
kkkkkkkk * k% * k% *kkkkkkk
*hkkkhkkkkk * % * % *khkkkkkkkk
kkkhkkkkkkk * * khkkkkkkkkk

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

46 Control Structures Solutions Chapter 2

1 // Exercise 2.47 Solution

2 #include <iostream>

3

4 using std::cout;

5 wusing std::endl;

6

7 int main()

8 {

9 // Pattern A

10 for (int row = 1; row <= 10; ++row) {
11

12 for (int col = 1; col <= row; ++col)
13 cout << '*';

14

15 cout << '\n';

16 }

17

18 cout << '\n';

19

20 // Pattern B

21 for (row = 10; row >= 1; --row) {

22

23 for (int col = 1; col <= row; ++col)
24 cout << '*';

25

26 cout << '\n';

27 }

28

29 cout << '\n';

30

31 // Pattern C

32 for (row = 10; row >= 1; --row) {

33

34 for (int space = 1; space <= 10 - row; ++space)
35 cout << ' ';

36

37 for (int col = 1; col <= row; ++col)
38 cout << '*';

39

40 cout << '\n';

41 }

42

43 cout << '\n';

44

45 // Pattern D

46 for (row = 1; row <= 10; ++row) {

47

48 for (int space = 1; space <= 10 - row; ++space)
49 cout << ' ';

50

51 for (int col = 1; col <= row; ++col)
52 cout << '*';

53

54 cout << '\n';

55 }

56

57 cout << endl;

58

59 return 0;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2

Control Structures Solutions 47

60

*

* %
* % %

* k%%

kkk

khkkkkk

khkkkkkk

khkkkhkkkk

khkkkkkkkk

khkkkkkkkkk

khkkkkkkkkk

khkkkkkkk*k

khkkkhkkkk

XXX X XX

*kkkk%k
* %k %k k%
* %k k%
* % %
* %
*
khkhkkkkkkkk
khkkkkkkkk
khkkkkkkk
*hkkkkkk
khkkkkk
* %k %k k%
*kk%k
* k%
* %
*
*
* %
* k%
*kk*k
* %k k%
khkkkkk
*hkkkkkk
*hkkkkhkk*k
khkkkkkkkk
khkhkkkkkkkk
1 // Exercise 2.47 Extra Credit Solution
2 #include <iostream>
3
4 using std::cout;
5 using std::endl;
6
7 int main()
8 {
9 int row, column, space;
10
11 for (row = 1; row <= 10; ++row) {
12
13 // part a
14 for (column = 1; column <= row; ++column)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

48 Control Structures Solutions

Chapter 2

15 cout << '*1;

16

17 for (space = 1; space <= 10 - row; ++space)

18 cout << ' ';

19

20 cout << '\t';

21

22 // part b

23 for (column = 10; column >= row; --column)

24 cout << '*';

25

26 for (space = 1; space < row; ++space)

27 cout << ' ';

28

29 cout << '\t';

30

31 // part c

32 for (space = 10; space > row; --space)

33 cout << ' ';

34

35 for (column = 1; column <= row; ++column)

36 cout << '*';

37

38 cout << '\t';

39

40 // part 4

41 for (space = 1; space < row; ++space)

42 cout << ' ';

43

44 for (column = 10; column >= row; --column)

45 cout << '*1;

46

47 cout << endl;

48 }

49

50 return 0;

51

* khkkkkkkkkk * khkkkkkkkkk
* % khkkkkkkkk * % khkhkkkkkkk
* %k % kkhkkkkkk*k * %k %k khkkkkkk*k
* % k% *hkkkkkk * %k k% *kkkkkk
* % %k k% * %k kkk * %k k% *kkkkk
kkkkkk *kk k% *kkkkkk * %k k%
*kkkkkk * % %k % *kkkkkk * % %k %
*hkhkkkkkk * %k % *hkhkkkkkk * %k %
khkkkkkkkk * % kkhkkkkkkkk * %
khkkhkkkkkkk * khkkkkkkkkk *

2.48 One interesting application of computers is drawing graphs and bar charts (sometimes called “histograms”). Write a pro-
gram that reads five numbers (each between 1 and 30). For each number read, your program should print a line containing that num-
ber of adjacent asterisks. For example, if your program reads the number seven, it should print ** * % * % %

// Exercise 2.48 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

COBRAWN—

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2

Control Structures Solutions 49

Enter 5 numbers between 1 and 30:

int main()

{

int number;
cout << "Enter 5 numbers

for (int i = 1; i <= 5;

cin >> number;

for (int j = 1; j <=
cout << '*';

cout << '\n';

}
cout << endl;

return 0;

khkkkkkkhkkkkkkkkk

khkkkkkkkkkkk

khkkkhkkkk

khkkkhkhkkhkhkhkhkkkhkkhkhkhkkkkkkkkkk

khkkkkkkk*k

between 1 and 30:

++i) {

number; ++3j)

16 12 8 27 9

-
I

2.49 A mail order house sells five different products whose retail prices are product 1 — $2.98, product 2—$4.50, product 3—
$9.98, product 4—$4.49 and product 5—$6.87. Write a program that reads a series of pairs of numbers as follows:

a) Product number

b) Quantity sold for one day

Your program should use a switch statement to help determine the retail price for each product. Your program should calculate
and display the total retail value of all products sold last week.

NVOONOOAWN —

// Exercise 2.49 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;
using std::ios;

#include <iomanip>

using std::setprecision;
using std::setiosflags;

int main()

{

int product, quantity;
double total = 0.0;

cout << "Enter pairs of
cin >> product;

while (product != -1)

cin >> quantity;

item numbers and quantities."
<< "\nEnter -1 for the item number to end input:

{

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

50 Control Structures Solutions Chapter 2

25

26 switch (product) {

27 case 1:

28 total += qguantity * 2.98;

29 break;

30 case 2:

31 total += quantity * 4.50;

32 break;

33 case 3:

34 total += quantity * 9.98;

35 break;

36 case 4:

37 total += quantity * 4.49;

38 break;

39 case 5:

40 total += qguantity * 6.87;

41 break;

42 default:

43 cout << "Invalid product code: " << product

44 << "\n Quantity: " << quantity << '\n';
45 break;

46 }

47

48 cout << "Enter pairs of item numbers and quantities.\n"
49 << "Enter -1 for the item number to end input: ";
50 cin >> product;

51 }

52

53 cout << setiosflags(ios::fixed | ios::showpoint)

54 << "The total retail value was: " << setprecision(2)
55 << total << endl;

56

57 return 0;

58 3

Enter pairs of item numbers and quantities.
Enter -1 for the item number to end input: 2 10
Enter pairs of item numbers and quantities.
Enter -1 for the item number to end input: 1 5
Enter pairs of item numbers and quantities.
Enter -1 for the item number to end input: -1
The total retail value was: 59.90

2.50 Modify the program of Fig. 2.22 so that it calculates the grade-point average for the class. A grade of ‘A’ is worth 4 points,
‘B’ is worth 3 points, etc.

// Exercise 2.50 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

#include <iomanip>
using std::setw;

using std::setprecision;
using std::setiosflags;

WN—=0VONOCOTA WN—

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2 Control Structures Solutions

51

int main()

{
int grade, gradeTotal = 0, gradeCount, aCount = 0,
bCount = 0, cCount = 0, dCount = 0, fCount = 0;
cout << "Enter the letter grades."
<< "\nEnter the EOF character to end input.\n"
<< setiosflags(ios::fixed | ios: :showpoint);
while ((grade = cin.get()) != EOF) {
switch (grade) {
case 'A': case 'a':
gradeTotal += 4;
++aCount;
break;
case 'B': case 'b':
gradeTotal += 3;
++bCount;
break;
case 'C': case 'c':
gradeTotal += 2;
++cCount;
break;
case 'D': case 'd':
++gradeTotal;
++dCount;
break;
case 'F': case 'f':
++fCount;
break;
case ' ': case '\n':
break;
default:
cout << "Incorrect letter grade entered."
<< " Enter a new grade.\n";
break;
}
}
gradeCount = aCount + bCount + cCount + dCount + fCount;
if (gradeCount != 0)
cout << "\nThe class average is: " << setprecision(1)
<< static_cast< double > (gradeTotal) / gradeCount
<< endl;
return 0;
}

Enter the letter grades.
Enter the EOF character to end input.
aABcccBbDf

Incorrect letter grade entered. Enter a new grade.

F

The class average is: 2.2

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

52 Control Structures Solutions Chapter 2

2.51 Modify the program in Fig. 2.21 so it uses only integers to calculate the compound interest. (Hint: Treat all monetary
amounts as integral numbers of pennies. Then “break” the result into its dollar portion and cents portion by using the division and
modulus operations. Insert a period.)

// Exercise 2.51 Solution
#include <iostream>

using std::cout;
using std::endl;

#include <iomanip>
using std::setw;

NV OONOGBAWN—

10 #include <cmath>

12 int main()

13 {
14 int amount, principal = 1000, dollars, cents;
15 double rate = .05;
16
17 cout << "Year" << setw(24) << "Amount on deposit\n";
18
19 for (int year = 1; year <= 10; ++year) {
20 amount = principal * pow(1.0 + rate, year);
21 cents = amount % 100;
22 dollars = amount; // assignment truncates decimal places
23 cout << setw(4) << year << setw(21) << dollars << '.';
24
25 if (cents < 10)
26 cout << '0' << cents << endl;
27 else
28 cout << cents << endl;
29 }
30
31 return 0;
32)
Year Amount on deposit
1 1050.50
2 1102.02
3 1157.57
4 1215.15
5 1276.76
6 1340.40
7 1407.07
8 1477.77
9 1551.51
10 1628.28

2.52 Assume i =1, 3j =2, k=3 andm= 2. What does each of the following statements print? Are the parentheses necessary
in each case?

a) cout << (i == 1) << endl;

ANS: 1, no.

b) cout << (j == 3) << endl;

ANS: 1, no.

c) cout << (i >=1 && j < 4) << endl;
ANS: 1, no.

d) cout << ((m <= 99 && k < m) << endl;
ANS: 0, no.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2

e) cout <<
ANS: 1, no.
f) cout <<
ANS: 0, no.
g) cout <<
ANS: 0, no.
h) cout <<
ANS:
i) cout <<

(j>1i || k ==m) << endl;
(k+m<3j || 3-3>k) <<
(!Im) << endl;

('(3Fj-m)) << endl;

1, yes. The inner pair of parentheses are required.

(!'(k>m)) << endl;

ANS: 0, yes. The inner pair of parentheses are required.

2.53

endl;

Control Structures Solutions 53

Write a program that prints a table of the binary, octal and hexadecimal equivalents of the decimal numbers in the range 1

through 256. If you are not familiar with these number systems, read Appendix C first.

for (int loop =
cout << dec << loop << "\t\t";

int factor =

Exercise 2.53 Solution
and dec identifiers are stream manipulators

hex,

std: :cout;
std::endl;

1l; loop <= 256;

// Output binary number
int number =
cout << (number == 256 ?

loop;

256;

"\t' << oct << loop << '\t'

T 77

2 // The oct,

3 7/

4 7/

5 //

6 7/

7 #include <iostream>
8

9 using

10 wusing

11 using std::oct;
12 using std::hex;
13 using std::dec;
14

15 int main()

16 {

17

18

19

20

21

22

23

24

25

26

27 do {

28

29

30

31

32

33

34 cout <<
35 }

36

37 return 0;

38 3

++loop) {

cout << (number < factor && number >=
factor /= 2;
number %= factor;

} while (factor > 2);

// Output octal and hexadecimal numbers
<< hex << loop << endl;

like endl that are defined in Chapter 11. The manipulator
oct causes integers to be output in octal, the manipulator
hex causes integers to be output in hexadecimal,
dec causes integers to be output in decimal.

and the manipulator

cout << "Decimal\t\tBinary\t\t\tOctal\tHexadecimal\n";

(factor /7 2) ? '1' :

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

54 Control Structures Solutions Chapter 2

Decimal Binary Octal Hexadecimal
1 00000000 1 1

2 00000001 2 2
245 01111010 365 £5
246 01111011 366 f6
247 01111011 367 £7
248 01111100 370 £8
249 01111100 371 £f9
250 01111101 372 fa
251 01111101 373 fb
252 01111110 374 fc
253 01111110 375 fa
254 01111111 376 fe
255 01111111 377 ff
256 10000000 400 100

2.54 Calculate the value of P from the infinite series
poadit 44 ay,
35 7 9

Print a table that shows the value of D approximated by 1 term of this series, by two terms, by three terms, etc. How many terms of
this series do you have to use before you first get 3.14? 3.141? 3.1415? 3.14159?

// Exercise 2.54 Solution
#include <iostream>

using std::cout;
using std::endl;

using std::ios;

#include <iomanip>

NV OoONOGBAWN—

10 using std::setprecision;
11 using std::setiosflags;

12

13 int main()

14 {

15 long double pi = 0.0, num = 4.0, denom = 1.0;

16 long accuracy = 4; // set decimal accuracy

17

18 cout << setiosflags(ios::fixed | ios::showpoint)
19 << "Accuracy set at: " << accuracy

20 << "\nterm\t\t pi\n";

21

22 for (long loop = 1; loop <= accuracy; ++loop) {
23

24 if (loop % 2 != 0)

25 pi += num / denom;

26 else

27 pPi -= num / denom;

28

29 cout << loop << "\t\t" << setprecision(8) << pi << '\n';
30 denom += 2.0;

31 }

32

33 cout << endl;

34

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2

Control Structures Solutions 55

35
36 1

Accuracy set at:

term

1

2

3

4
236138
236139
236140

return 0;

400000
pi
4.00000000
2.66666667
3.46666667
2.89523810

3.14158999
3.14159531
3.14159000

2.55 (Pythagorean Triples) A right triangle can have sides that are all integers. The set of three integer values for the sides of a

right triangle is called a Pythagorean triple. These three sides must satisfy the relationship that the sum of the squares of two of the
sides is equal to the square of the hypotenuse. Find all Pythagorean triples for sidel, side2 and hypotenuse all no larger than
500. Use a triple-nested £orx-loop that tries all possibilities. This is an example of “brute force” computing. You will learn in more
advanced computer science courses that there are many interesting problems for which there is no known algorithmic approach oth-
er than using sheer brute force.

{

NV ONOOTRARWN—

int main()

int count

long int hyptSquared,

for (long sidel = 1; sidel <= 500;

for (

for (long hypt = 1;

}

// Exercise 2.55 Solution
#include<iostream>

using std::cout;
using std::endl;

= 0;

sidesSquared;

++sidel) {

long side2 = 1; side2 <= 500; ++side2

hypt <= 500; ++hypt

hyptSquared = hypt * hypt;
sidesSquared = sidel * sidel + side2 * side2;

if (hyptSquared == sidesSquared) {

cout << sidel <<
<< hypt <<
++count;

I\tl
'\n';

<< side2 <<

) {

) {

l\tl

cout << "A total of " << count << " triples were found." << endl;

return 0;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

56 Control Structures Solutions Chapter 2

476 93 485
480 31 481
480 88 488
480 108 492
480 140 500
483 44 485

A total of 772 triples were found.

2.56 A company pays its employees as managers (who receive a fixed weekly salary), hourly workers (who receive a fixed hour-
ly wage for up to the first 40 hours they work and “time-and-a-half,” i.e., 1.5 times their hourly wage, for overtime hours worked),
commission workers (who receive $250 plus 5.7% of their gross weekly sales), or pieceworkers (who receive a fixed amount of
money per item for each of the items they produce—each pieceworker in this company works on only one type of item). Write a
program to compute the weekly pay for each employee. You do not know the number of employees in advance. Each type of em-
ployee has its own pay code: Managers have paycode 1, hourly workers have code 2, commission workers have code 3 and piece-
workers have code 4. Use a switch to compute each employee’s pay based on that employee’s paycode. Within the switch,
prompt the user (i.e., the payroll clerk) to enter the appropriate facts your program needs to calculate each employee’s pay based on
that employee’s paycode.

// Exercise 2.56 Solution
#include<iostream>

using std::cout;
using std::endl;
using std::cin;
using std::ios;

NVOONOOAWN —

#include<iomanip>

11 using std::setprecision;
12 using std::setiosflags;

13

14 int main()

15 {

16 int payCode, managers = 0, hWorkers = 0, cWorkers = 0;
17 int pWorkers = 0, pieces;

18 double mSalary, hSalary, cSalary, pSalary, hours;
19 double pay;

20

21 cout << "Enter paycode (-1 to end): "

22 << setiosflags(ios::fixed | ios::showpoint);
23 cin >> payCode;

24

25 while (payCode != -1) {

26 switch (payCode) {

27 case 1:

28 cout << "Manager selected."

29 << "\nEnter weekly salary: ";

30 cin >> mSalary;

31 cout << "The manager's pay is $ "

32 << setprecision(2) << mSalary;

33 ++managers;

34 break;

35 case 2:

36 cout << "Hourly worker selected.\n"

37 << "Enter the hourly salary: ";

38 cin >> hSalary;

39 cout << "Enter the total hours worked: ";
40 cin >> hours;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2 Control Structures Solutions 57

41

42 pay = hours > 40.0 ? (hours - 40) * 1.5 * hSalary + hSalary * 40.0:
43 hSalary * hours;

44

45 cout << "Worker's pay is $ " << setprecision(2) << pay << '\n';
46 ++hWorkers;

47 break;

48 case 3:

49 cout << "Commission worker selected.\n"

50 << "Enter gross weekly sales: ";

51 cin >> cSalary;

52 pay = 250.0 + 0.057 * cSalary;

53 cout << "Commission Worker's pay is $ " << setprecision(2)
54 << pay << '\n';

55 ++cWorkers;

56 break;

57 case 4:

58 cout << "Piece worker selected.\n"

59 << "Enter number of pieces: ";

60 cin >> pieces;

61 cout << "Enter wage per piece: ";

62 cin >> pSalary;

63 pay = pieces * pSalary;

64 cout << "Piece Worker's pay is $§ " << setprecision(2)
65 << pay << '\n';

66 ++pWorkers;

67 break;

68 default:

69 cout << "Invalid pay code.\n";

70 break;

71 }

72

73 cout << "\nEnter paycode (-1 to end): ";

74 cin >> payCode;

75 }

76

77 cout << "\n\nTotal number of managers paid s "
78 << managers

79 << "\nTotal number of hourly workers paid s "
80 << hWorkers

81 << "\nTotal number of commission workers paid: "
82 << cWorkers

83 << "\nTotal number of piece workers paid s "
84 << pWorkers << endl;

85

86 return 0;

87

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

68 Control Structures Solutions

Enter

paycode (-1 to end): 3

Commission worker selected.

Enter

gross weekly sales: 4000

Commission Worker's pay is $ 478.00

Enter

paycode (-1 to end): 2

Hourly worker selected.

Enter
Enter

Enter
Piece
Enter
Enter
Piece

Enter
Total
Total

Total
Total

2.57

the hourly salary: 4.50

the total hours worked: 20
Worker's pay is $ 90.00

paycode (-1 to end): 4
worker selected.

number of pieces: 50
wage per piece: 3
Worker's pay is $ 150.00

paycode (-1 to end): -1

number of managers paid

number of hourly workers paid
number of commission workers paid
number of piece workers paid

R RRO

Chapter 2

(De Morgan’s Laws) In this chapter, we discussed the logical operators && | | and !. De Morgan’s Laws can sometimes

make it more convenient for us to express a logical expression. These laws state that the expression ! (conditionl && condition2)

is logically equivalent to the expression (! conditionl |

tcondition2) . Also, the expression ! (conditionl | | condition2) is log-

ically equivalent to the expression (! conditionl && ! condition2) . Use De Morgan’s Laws to write equivalent expressions for each
of the following, then write a program to show that both the original expression and the new expression in each case are equivalent:

a)

'(x%x <5) &&
[| t(g 1=

1(y >=17)

{

NVOONOGTA WN —

24

// Exercise 2.57 Solution
#include<iostream>

using std::cout;
using std::endl;

int main()

int x =10, y =1, a =3, b = 3,
g=5,Y=1, i =2, j =09;
cout << "current variable values are:" << endl
<< "x = " <K X <K<K ", y="<ky<< ", a="«<x<a
<< ", b= " << b << endl << "g =" << g<< ", ¥Y=m1"
<< Y << ", i ="<k<i<k< ", j="<<j << "\n\n";

if ((!(x < 5) &&

cout << "!(x < 5) &&
<< " 1((x < 5) |
else
cout << "!(x < 5) &&
<< " 1 ((x < 5) ||
if ((!(a == Db) || !(g !=

Iy >= 7)) && (! ((x < 5) |]

| (¥ >= 7))" << endl;

(y >= 7))" << endl;

5)) & (!((a == b) && (g

(y >=17))))
I(y >= 7) is equivalent to"

I(y >= 7) is not equivalent to"

5))))

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2 Control Structures Solutions

59

25 cout << "!(a == Db) || !(g != 5) is equivalent to"

26 << " I((a ==Db) && (g != 5))" << endl;

27 else

28 cout << "!(a == b) || !(g != 5) is not equivalent to"
29 << " I((a ==Db) && (g != 5))" << endl;

30

31 if (1((x <= 8) && (Y > 4)) && (! ((x <= 8) || (Y > 4))))

32 cout << "!((x <= 8) && (Y > 4)) is equivalent to"

33 << " I((x <= 8) || (Y > 4))" << endl;

34 else

35 cout << "!((x <= 8) && (Y > 4)) is not equivalent to"
36 << " I((x <= 8) || (Y > 4))" << endl;

37

38 if (1 ((i > 4) || (j <= 6)) && !((1i > 4) && (J <= 6)))

39 cout << "!((i > 4) || (j <= 6)) is equivalent to"

40 << " I1((i > 4) &% (j <= 6))" << endl;

41 else

42 cout << "!((i > 4) || (3 <= 6)) is not equivalent to"
43 << " I1((i > 4) &% (j <= 6))" << endl;

44

45 return 0;

46 }

current variable values are:

x =10, y =1, a =3, b =3

g=5,Y=1, 1i=2, j=29

1(x < 5) & !(y >= 7) is equivalent to !((x < 5) || (¥ >= 7))
!(a ==Db) || !(g != 5) is equivalent to !((a == b) && (g != 5))
1((x <= 8) && (Y > 4)) is equivalent to !((x <= 8) || (Y > 4))
1((i > 4) || (3 <= 6)) is equivalent to !((i > 4) && (j <= 6))

2.58 Write a program that prints the following diamond shape. You may use output statements that print either a single asterisk
(*) or a single blank. Maximize your use of repetition (with nested £or structures) and minimize the number of output statements.

*

* k%
kkk
*khkkkkk*x
khkkkkkkkk
kkkkkk*k
hkkk

* k%

*

// Exercise 2.58 Solution
#include <iostream>

using std::cout;
using std::endl;

int main()
{
// top half
for (int row = 1; row <= 5; ++row) {

—OVOONOOBAWN—

—

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

60 Control Structures Solutions

Chapter 2

12 for (int space = 1l; space <= 5 - row; ++space)
13 cout << ' ';

15 for (int asterisk = 1; asterisk <= 2 * row - 1l; ++asterisk)
16 cout << '*';

18 cout << '\n';
19 }

21 // bottom half
22 for (row = 4; row >= 1; --row) {

24 for (int space = 1; space <= 5 - row; ++space)
25 cout << ' ';

27 for (int asterisk = 1; asterisk <= 2 * row - 1; ++asterisk)
28 cout << '*';

30 cout << '\n';
31 }

33 cout << endl;

35 return 0;

*

* %%
*kkk*k
khkkkkk*
khkkkhkkkk*x
kkkkkk*k
kkk

* %%

*

2.59 Modify the program you wrote in Exercise 2.58 to read an odd number in the range 1 to 19 to specify the number of rows

in the diamond. Your program should then display a diamond of the appropriate size.

1 // Exercise 2.59 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int main()

9 {

10 int size;

11

12 cout << "Enter an odd number for the diamond size (1-19): \n";
13 cin >> size;

14

15 // top half

16 for (int rows = 1; rows <= size - 2; rows += 2) {

17

18 for (int space = (size - rows) / 2; space > 0; --space)
19 cout << ' ';

20

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2

Control Structures Solutions 61

21 for (int asterisk = 1; asterisk <= rows;

22 cout << '*';

24 cout << '\n';
25 }

27 // bottom half

28 for (rows = size; rows >= 0; rows -= 2) {

30 for (int space = (size - rows) / 2;

31 cout << ' ';

33 for (int asterisk = 1; asterisk <= rows;

34 cout << '*';

36 cout << '\n';
37 }

39 cout << endl;

41 return 0;

Enter an odd number for the diamond size (1-19):

15

*

* %%k
*hkkkk
kkkkkkk
khkkkkkkk*k
khkkhkkkhkkkkk
khkkkkkhkkkkkkk
khkkkkkhkkhkkkkkkkk
khkkkhkkhkhkkkkkkk
khkkkkkkkkkk
khkkkkkkkk
*khkkkkk*k
*kkkk
* %%k
*

space > 0;

++asterisk)

--space)

++asterisk)

2.60 A criticism of the break statement and the continue statement is that each is unstructured. Actually break statements
and cont inuestatements can always be replaced by structured statements, although doing so can be awkward. Describe in general
how you would remove any break statement from a loop in a program and replace that statement with some structured equivalent.
(Hint: The break statement leaves a loop from within the body of the loop. The other way to leave is by failing the loop-continu-
ation test. Consider using in the loop-continuation test a second test that indicates “early exit because of a ‘break’ condition.”) Use
the technique you developed here to remove the break statement from the program of Fig. 2.26.

// Exercise 2.60 Solution
#include <iostream>

using std::cout;
using std::endl;

int main()

{
bool breakOut = false;
int x;

—ONVONOCOEA WN—

— —

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

62 Control Structures Solutions Chapter 2

12 for (x = 1; % <= 10 && !breakOut; ++x) {

14 if (x == 4)

15 breakOut true;

17 cout << x << ' ';
18 }

20 cout << "\nBroke out of loop at x = " << x << endl;

22 return 0;

1234
Broke out of loop at x = 5

2.61 What does the following program segment do?

; i++)
= 3; j++) {
k <= 4; k++)

}

cout << endl;

ONOORAWN—
Q -
(]
<
ot
A
A
0
=}

o7
H =~
~

* k%%
* %k k%
*kk %k

* %k %k
* kk %k
* k%%

* kk %k
* k%%
* %k %k

* k%%
* %k %k
* kk %k

* %k %k
* kk %k
* k%%

2.62 Describe in general how you would remove any continue statement from a loop in a program and replace that statement
with some structured equivalent. Use the technique you developed here to remove the continue statement from the program of
Fig. 2.27.

// Exercise 2.62 Solution
#include <iostream>

using std::cout;
using std::endl;

ABRhWN—

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 2 Control Structures Solutions 63

6

7 int main()

8 {

9 for (int x = 1; x <= 10; ++x) {
10

11 if ((x == 5)

12 ++X;

13

14 cout << x << ' ';

15 }

16

17 cout << "\nUsed ++x to skip printing the value 5" << endl;
18

19 return 0;

20)

12346789 10
Used ++x to skip printing the value 5

2.63 (“The Twelve Days of Christmas” Song) Write a program that uses repetition and switch structures to print the song “The
Twelve Days of Christmas.” One switch structure should be used to print the day (i.e., “First,” “Second,” etc.). A separate
switch structure should be used to print the remainder of each verse.

1 // Exercise 2.63 Solution

2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 int main()

8 {

9 for (int day = 1; day < 13; day++) {
10 cout << "On the ";

11

12 switch (day) { // switch for current day
13 case 1:

14 cout << "first";
15 break;

16 case 2:

17 cout << "second";
18 break;

19 case 3:

20 cout << "third";
21 break;

22 case 4:

23 cout << "fourth";
24 break;

25 case 5:

26 cout << "fifth";
27 break;

28 case 6:

29 cout << "sixth";
30 break;
31 case 7:
32 cout << "seventh";
33 break;
34 case 8:
35 cout << "eighth";
36 break;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

64 Control Structures Solutions

Chapter 2

}

}

case 9:
cout <<
break;

case 10:
cout <<
break;

case 11:
cout <<
break;

case 12:
cout <<
break;

cout << " day

switch (day) {

case 12:

cout << "\tTwelve drummers drumming, \n";

case 11:
cout <<
case 10:
cout <<
case 9:
cout <<
case 8:
cout <<
case 7:
cout <<
case 6:
cout <<
case 5:
cout <<
case 4:
cout <<
case 3:
cout <<
case 2:
cout <<
case 1:
cout <<

cout << endl;

return 0;

"nineth";

"tenth";

"eleventh";

"twelfth";

of Christmas, \nMy true love sent to me:\n";

// switch for gifts

"\tEleven pipers piping, \n";

"\tTen lords a-leaping, \n";

"\tNine ladies dancing, \n";

"\tEight maids a-milking, \n";

"\tSeven swans a-swimming,\n";

"\tSix geese a-laying,\n";

"\tFive golden rings, \n";

"\tFour calling birds, \n";

"\tThree French hens, \n";

"\tTwo turtle doves,

"A partridge in a pear tree.\n\n\n";

and\n";

©2000. Deitel & Associates, Inc. and Prentice Hall

. All Rights Reserved.

Chapter 2 Control Structures Solutions 65

Three French hens,
Two turtle doves, and
A partridge in a pear tree.

On the twelfth day of Christmas,
My true love sent to me:
Twelve drummers drumming,
Eleven pipers piping,
Ten lords a-leaping,
Nine ladies dancing,
Eight maids a-milking,
Seven swans a-swimming,
Six geese a-laying,
Five golden rings,
Four calling birds,
Three French hens,
Two turtle doves, and
A partridge in a pear tree.

Exercise 2.64 corresponds to Section 2.22, “Thinking About Objects.”

2.64 Describe in 200 words or less what an automobile is and does. List the nouns and verbs separately. In the text, we stated
that each noun might correspond to an object that will need to be built to implement a system, in this case a car. Pick five of the
objects you listed, and, for each, list several attributes and several behaviors. Describe briefly how these objects interact with one
another and other objects in your description. You have just performed several of the key steps in a typical object-oriented design.
ANS:
A specific type of vehicle containing 4 wheels, doors, seats, windows, steering wheel, brakes, radio, engine, exhaust
system, transmission, axels, windshield, mirrors, etc.
A car can accelerate, decelerate, turn, move forward, move backward, stop, etc.
Wheels:
Attributes: size, type, tread depth.
Behaviors: rotate forward, rotate backward.
Doors:
Attributes: type (passenger, trunk, etc.), open or closed.
Behaviors: open, close, lock, unlock.
Steering Wheel:
Attributes: adjustible.
Behaviors: turn left, turn right, adjust up, adjust down.
Brakes:
Attributes: pressed or not pressed, pressure of press.
Behaviors: press, antilock.
Engine:
Attributes: cylinders, radiator, timing belts, spark plugs, etc.
Behaviors: accelerate, decelerate, turn on, turn off.
Interactions:
Person turns the steering wheel which causes the wheels to turn in the appropriate direction.
Person presses the accelerator pedal which causes the engine revolutions per minute to increase, resulting in a faster
rotation of the wheels.
Person opens door. Person closes door.
Person releases accelerator pedal which causes engine RPMs to decrease, resulting in a slower rotation of the wheels.
Person presses brake pedal which causes brakes to be applied to wheels slows the rotation of thewheels.

2.65 (Peter Minuit Problem) Legend has it that in 1626 Peter Minuit purchased Manhattan for $24.00 in barter. Did he make a
good investment? To answer this question, modify the compound interest program of Fig. 2.21 to begin with a principal of $24.00
and to calculate the amount of interest on deposit if that money had been kept on deposit until this year (374 years through 2000).
Run the program with interest rates of 5%, 6%, 7%, 8%, 9% and 10% to observe the wonders of compound interest.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Functions
Solutions

Solutions

3.11 Show the value of x after each of the following statements is performed:
a) x = fabs(7.5);

ANS: 7.5

b) x = flooxr(7.5);
ANS: 7.0

c) x = fabs(0.0);
ANS: 0.0

d) x = ceil(0.0);
ANS: 0.0

e) x = fabs(-6.4);
ANS: 6.4

f) x = ceil(-6.4);
ANS: -6.0

g) x = ceil(-fabs(-8 + floor(-5.5)));
ANS: -14.0

3.12 A parking garage charges a $2.00 minimum fee to park for up to three hours. The garage charges an additional $0.50 per
hour for each hour or part thereof in excess of three hours. The maximum charge for any given 24-hour period is $10.00. Assume
that no car parks for longer than 24 hours at a time. Write a program that will calculate and print the parking charges for each of 3
customers who parked their cars in this garage yesterday. You should enter the hours parked for each customer. Your program
should print the results in a neat tabular format and should calculate and print the total of yesterday's receipts. The program should
use the function calculateCharges to determine the charge for each customer. Your outputs should appear in the following
format:

Car Hours Charge
1 1.5 2.00
2 4.0 2.50
3 24.0 10.00
TOTAL 29.5 14.50

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 67
1 // Exercise 3.12 Solution
2 $#include <iostream>
K]
4 using std::cout;
5 using std::endl;
6 wusing std::cin;
7 using std::ios;
8
9 $#include <iomanip>
10
11 using std::setw;
12 using std::setprecision;
13 using std::setiosflags;
14
15 #include <cmath>
16
17 double calculateCharges(double);
18
19 main()
20 ¢
21 double hour, currentCharge, totalCharges = 0.0, totalHours = 0.0;
22 int first = 1;
23
24 cout << "Enter the hours parked for 3 cars: ";
25
26 for (int i = 1; i <= 3; i++) {
27 cin >> hour;
28 totalHours += hour;
29
30 if (first) {
31 cout << setw(5) << "Car" << setw(15) << "Hours"
32 << setw(15) << "Charge\n";
33 first = 0; // prevents this from printing again
34 }
35
36 totalCharges += (currentCharge = calculateCharges(hour));
37 cout << setiosflags(ios::fixed | ios::showpoint)
38 << setw(3) << 1 << setw(17) << setprecision(1) << hour
39 << setw(15) << setprecision(2) << currentCharge << "\n";
40 }
41
42 cout << setw(7) << "TOTAL" << setw(13) << setprecision(1)
43 << totalHours << setw(15) << setprecision(2)
44 << totalCharges << endl;
45
46
47 return 0;
48)
49
50 double calculateCharges(double hours)
51 {
52 double charge;
53
54 if (hours < 3.0)
55 charge = 2.0;
56 else if (hours < 19.0)
57 charge = 2.0 + .5 * ceil(hours - 3.0);
58 else
59 charge = 10.0;
60
61 return charge;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

68 Functions Solutions Chapter 3

62)

Enter the hours parked for 3 cars: 1 2 3

Car Hours Charge
1 1.0 2.00
2 2.0 2.00
3 3.0 2.00
TOTAL 6.0 6.00

3.13 An application of function £1loor is rounding a value to the nearest integer. The statement
y = floor(x + .5);

will round the number x to the nearest integer and assign the result toy. Write a program that reads several numbers and uses the
preceding statement to round each of these numbers to the nearest integer. For each number processed, print both the original num-
ber and the rounded number.

// Exercise 3.13 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;
using std::ios;

NV ONOOTRARWN—

#include <iomanip>

11 using std::setprecision;
12 using std::setiosflags;

13

14 #include <cmath>

15

16 wvoid roundToIntegers(void);

17

18 int main()

19 {

20 roundToIntegers();

21

22 return 0;

23 1}

24

25 +woid roundToIntegers(void)

26 {

27 double x, y;

28

29 cout << setiosflags(ios::fixed | ios::showpoint);
30

31 for (int loop = 1; loop <= 5; loop++) {
32 cout << "Enter a number: ";

33 cin >> x;

34 y = floor(x + .5);

35 cout << x << " rounded is " << setprecision(1) << y << endl;
36 }

37)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions

Enter a number: 8.22
8.220000 rounded is 8.0
Enter a number: 7.98
8.0 rounded is 8.0
Enter a number: 4.52
4.5 rounded is 5.0
Enter a number: 6.9999
7.0 rounded is 7.0
Enter a number: 3.345
3.3 rounded is 3.0

3.14 Function £loor can be used to round a number to a specific decimal place. The statement
y = floor(x * 10 + .5) / 10;

rounds x to the tenths position (the first position to the right of the decimal point). The statement

y = floor(x * 100 + .5) / 100;

69

rounds x to the hundredths position (the second position to the right of the decimal point). Write a program that defines four func-

tions to round a number x in various ways:
a) roundToInteger(number)
b) roundToTenths(number)
¢) roundToHundredths(number)
d) roundToThousandths(number)

For each value read, your program should print the original value, the number rounded to the nearest integer, the number

rounded to the nearest tenth, the number rounded to the nearest hundredth and the number rounded to the nearest thousandth.

// Exercise 3.14 Solution
#include <iostream>

using std::cout;
using std::cin;

using std::ios;

#include <iomanip>

NVOONOOAWN —

10 using std::setprecision;
11 using std::setiosflags;
12 using std::resetiosflags;

14 #include <cmath>

16 double roundToInteger(double);

17 double roundToTenths(double);

18 double roundToHundreths(double);
19 double roundToThousandths(double);

20

21 int main()

22 ¢

23 int count;

24 double number;

25

26 cout << "How many numbers do you want to process? "
27 << setiosflags(ios::fixed);
28 cin >> count;

29

30 for (int i = 0; i < count; ++i) {
31 cout << "\nEnter number: ";

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

70 Functions Solutions Chapter 3

32 cin >> number;

33 cout << number << " rounded to the nearest integer is: W
34 << setprecision(0) << roundToInteger(number) << '\n'
35 << setiosflags(ios::showpoint)

36 << number << " rounded to the nearest tenth is: L
37 << setprecision(1) << roundToTenths(number) << '\n'
38 << number << " rounded to the nearest hundredth is: "
39 << setprecision(2) << roundToHundreths(number) << '\n'
40 << number << " rounded to the nearest thousandth is: "
41 << setprecision(3) << roundToThousandths(number) << '\n'
42 << resetiosflags(ios::showpoint);

43 }

44

45 return 0;

46 }

47

48 double roundToInteger(double n)

49 {

50 return floor(n + .5);

51

52

53 double roundToTenths(double n)

54 ¢

55 return floor(n * 10 + .5) / 10;

56 1}

57

58 double roundToHundreths(double n)

59 {

60 return floor(n * 100 + .5) / 100;

61

62

63 double roundToThousandths(double n)

64 {

65 return floor(n * 1000 + .5) / 1000.0;

66 1}

How many numbers do you want to process? 1

Enter number: 2.564

2.564000 rounded to the nearest integer is: 3
3. rounded to the nearest tenth is: 2.6
2.6 rounded to the nearest hundredth is: 2.56
2.56 rounded to the nearest thousandth is: 2.564

3.15 Answer each of the following questions.
a) What does it mean to choose numbers “at random?”
ANS: Every number has an equal chance of being chosen at any time.
b) Why is the rand function useful for simulating games of chance?
ANS: Because it produces a sequence of pseudo-random numbers that when scaled appear to be random.
¢) Why would you randomize a program by using srand? Under what circumstances is it desirable not to randomize?
ANS: The sequence of numbers produced by the random number generator differ each time function srand is called. Not
randomizing is useful for debugging purposes—the programmer knows the sequence of numbers.
d) Why is it often necessary to scale and/or shift the values produced by rand?
ANS: To produce random values in a specific range.
e) Why is computerized simulation of real-world situations a useful technique?
ANS: It enables more accurate predictions of random events such as cars arriving at a toll booth, people arriving in lines,
birds arriving at a tree, etc. The results of a simulation can help determine how many toll booths to have open or how many
cashiers to have open at specified times.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 71

3.16 Write statements that assign random integers to the variable z in the following ranges:
a) 1EnE2
ANS: n = 1 + rand() % 2;
b) 1ExE£ 100
ANS: n = 1 + rand() % 100;
o0 0EnEo9
ANS: n = rand() % 10;
d) 1000EnE 1112
ANS: n = 1000 + rand() % 13;

e) -1EnfE1
ANS: n = rand() % 3 - 1;
n 3EnE11

ANS: n = rand() % 15 - 3;

3.17 For each of the following sets of integers, write a single statement that will print a number at random from the set.
a) 2,4,6,8,10.
ANS: cout << 2 * (1 + rand() % 5)) << ’\n’;
b) 3,5,7,9,11.
ANS: cout << 1 + 2 * (1 + rand() % 5)) << ’\n’;
c) 6,10, 14, 18, 22.
ANS: cout << 6 + 4 * (rand() % 5) << ’'\n’;

3.18 Write a function integerPower (base, exponent) that returns the value of

bﬂse exponent

For example, integerPower(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is a positive, nonzero integer and that
base is an integer. The function integerPower should use foror while to control the calculation. Do not use any math
library functions.

ANS:

1 // Exercise 3.18 Solution

2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6 wusing std::cin;

7

8 int integerPower(int, int);

9

10 int main()

11 {

12 int exp, base;

13

14 cout << "Enter base and exponent: ";
15 cin >> base >> exp;

16 cout << base << " to the power " << exp << " is: "
17 << integerPower(base, exp) << endl;
18

19 return 0;
20
21
22 int integerPower(int b, int e)
23 {
24 int product = 1;
25
26 for (int i = 1; i <= e; ++i)
27 product *= b;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

72 Functions Solutions

Chapter 3

28
29
30

}

return product;

Enter base and exponent: 5 2
5 to the power 2 is: 25

3.19 Define a function hypotenuse that calculates the length of the hypotenuse of a right triangle when the other two sides
are given. Use this function in a program to determine the length of the hypotenuse for each of the following triangles. The function
should take two arguments of type double and return the hypotenuse as adouble.

Triangle Side 1 Side 2
3.0 4.0
5.0 12.0
8.0 15.0

1 // Exercise 3.19 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7 using std::ios;

8

9 $#include <iomanip>

10

11 using std::setprecision;

12 using std::setiosflags;

13

14 #$#include <cmath>

15

16 double hypotenuse(double, double);

17

18 int main()

19 {

20 double sidel, side2;

21

22 cout << setiosflags(ios::fixed | ios::showpoint);

23

24 for (int i = 1; i <= 3; ++i) {

25 cout << "\nEnter 2 sides of right triangle: ";

26 cin >> sidel >> side2;

27 cout << "Hypotenuse: " << setprecision(1)

28 << hypotenuse(sidel, side2) << endl;

29 }

30

31 return 0;

32)

33

34 double hypotenuse(double sl, double s2)

35 {

36 return sqgrt(sl * sl + s2 * s2);

37 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 73

Enter 2 sides of right triangle: 4 5
Hypotenuse: 6.4

Enter 2 sides of right triangle: 3 4
Hypotenuse: 5.0

Enter 2 sides of right triangle: 12 7
Hypotenuse: 13.9

3.20 Write a function multiple that determines for a pair of integers whether the second integer is a multiple of the first. The
function should take two integer arguments and return trueif the second is a multiple of the first, false otherwise. Use this func-
tion in a program that inputs a series of pairs of integers.

1 // Exercise 3.20 Solution

2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 bool multiple(int, int);

9

10 int main()

11 ¢

12 int %, y;

13

14 for (int i1 = 1; i <= 3; ++i) {
15 cout << "Enter two integers: ";
16 cin >> x >> y;

17

18 if (multiple(x, v))

19 cout << y << " is a multiple of " << x << "\n\n";
20 else

21 cout << y << " is not a multiple of " << x << "\n\n";
22 }

23

24 cout << endl;

25

26 return 0;

27)

28

29 bool multiple(int a, int b)

30 {

31 return !(b % a);

32)

Enter two integers: 3 4
4 is not a multiple of 3

Enter two integers: 12 3
3 is not a multiple of 12

Enter two integers: 3 12
12 is a multiple of 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

74 Functions Solutions Chapter 3

3.21 Write a program that inputs a series of integers and passes them one at a time to function even, which uses the modulus
operator to determine whether an integer is even. The function should take an integer argument and return true if the integer is
even and false otherwise.

1 // Exercise 3.21 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 bool even(int);

9

10 int main()

11 ¢

12 int x;

13

14 for (int i = 1; i <= 3; ++i) {
15 cout << "Enter an integer: ";
16 cin >> x;

17

18 if (even(x))

19 cout << x << " is an even integer\n\n";
20 else

21 cout << x << " is an odd integer\n\n";
22 }

23

24 cout << endl;

25

26 return 0;

27 1%

28

29 bool even(int a)

30 ¢
31 return !(a % 2);
32)

Enter an integer: 8
8 is an even integer

Enter an integer: 3
3 is an odd integer

Enter an integer: 99
99 is an odd integer

3.22 Write a function that displays at the left margin of the screen a solid square of asterisks whose side is specified in integer
parameter side. For example, if side is 4, the function displays

* k%%
* %k %k
* kk %k
* k%%

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 75

1 // Exercise 3.22 Solution
2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6 wusing std::cin;

7

8 wvoid square(int);

9

10 int main()

11 ¢

12 int side;

13

14 cout << "Enter side: ";
15 cin >> side;

16 cout << '\n';

17

18 square(side);

19

20 cout << endl;

21

22 return 0;

23

24

25 void square(int s)

26 {

27 for (int row = 1; row <= s; ++row) {
28

29 for (int col = 1; col <= s; ++col)
30 cout << '*';
31
32 cout << '\n';
33 }
34 3

Enter side: 8

khkkkkkkk
khkkkkkkk
khkkkkkkk
khkkkkkkk
khkkkkkkk
khkkkkkkk
khkkkkkkk
khkkkkkkk

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

76 Functions Solutions Chapter 3

3.23 Modify the function created in Exercise 3.22 to form the square out of whatever character is contained in character param-
eter fillCharacter. Thus, if sideis 5 and fillCharacter is “#,” then this function should print

H###H#

##H###

##H#H##

H###H#

##H###

1 // Exercise 3.23 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 wvoid square(int, char);

9

10 int main()

11 {

12 int s;

13 char c;

14

15 cout << "Enter a character and the side length: ";
16 cin >> ¢ >> s;

17 cout << '\n';

18

19 square(s, ¢);

20

21 cout << endl;

22

23 return 0;

24 1%

25

26 void square(int side, char fillCharacter)
27 {

28 for (int row = 1; row <= side; ++row) {
29

30 for (int col = 1; col <= side; ++col)
31 cout << fillCharacter;
32

33 cout << '\n';
34 }
35 3

Enter a character and the side length: H 5

HHHHH
HHHHH
HHHHH
HHHHH
HHHHH

3.24 Use techniques similar to those developed in Exercises 3.22 and 3.23 to produce a program that graphs a wide range of
shapes.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3

Functions Solutions 77

3.25 Write program segments that accomplish each of the following:
a) Calculate the integer part of the quotient when integer a is divided by integer b.
b) Calculate the integer remainder when integer a is divided by integer b.
¢) Use the program pieces developed in a) and b) to write a function that inputs an integer between 1 and 32767 and
prints it as a series of digits, each pair of which is separated by two spaces. For example, the integer 4562 should be
printed as
4 5 6 2
1 // Exercise 3.25 Solution
2 #include <iostream>
3
4 using std::cout;
5 using std::endl;
6 using std::cin;
7
8 #include <iomanip>
9
10 using std::setw;
11
12 int quotient(int, int);
13 int remainder(int, int);
14
15 int main()
16 {
17 int number, divisor = 10000;
18
19 cout << "Enter an integer between 1 and 32767: ";
20 cin >> number;
21
22 cout << "The digits in the number are:\n";
23
24 while (number >= 1) {
25
26 if (number >= divisor) {
27 cout << setw(3) << quotient(number, divisor);
28 number = remainder(number, divisor);
29 divisor = quotient(divisor, 10);
30 }
31 else
32 divisor = quotient(divisor, 10);
33 }
34
35 cout << endl;
36
37 return 0;
38 13
39
40 // Part A: determine quotient using integer division
41 int quotient(int a, int b)
42 {
43 return a / b;
44 3
45
46 // Part B: determine remainder using the modulus operator
47 int remainder(int a, int b)
48 {
49 return a % b;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

78 Functions Solutions Chapter 3

50 3}

Enter an integer between 1 and 32767: 6758
The digits in the number are:
6 7 5 8

3.26 Write a function that takes the time as three integer arguments (for hours, minutes and seconds), and returns the number of
seconds since the last time the clock “struck 12.” Use this function to calculate the amount of time in seconds between two times,
both of which are within one 12-hour cycle of the clock.

1 // Exercise 3.26 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 unsigned seconds(unsigned, unsigned, unsigned);

9

10 int main()

11 ¢

12 unsigned hours, minutes, secs, temp;

13

14 cout << "Enter the first time as three integers: ";
15 cin >> hours >> minutes >> secs;

16

17 temp = seconds(hours, minutes, secs);

18

19 cout << "Enter the second time as three integers: ";
20 cin >> hours >> minutes >> secs;

21

22 cout << "The difference between the times is "

23 << seconds(hours, minutes, secs) - temp

24 << " seconds" << endl;

25

26 return 0;

27)

28

29 unsigned seconds(unsigned h, unsigned m, unsigned s)
30 ¢
31 return 3600 * (h >= 12 ? h - 12 : h) + 60 *m + s;
32)

Enter the first time as three integers: 5 33 45
Enter the second time as three integers: 9 22 8
The difference between the times is 13703 seconds

3.27 Implement the following integer functions:
a) Function celsius returns the Celsius equivalent of a Fahrenheit temperature.
b) Function fahrenheit returns the Fahrenheit equivalent of a Celsius temperature.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 79

c) Use these functions to write a program that prints charts showing the Fahrenheit equivalents of all Celsius temperatures
from O to 100 degrees, and the Celsius equivalents of all Fahrenheit temperatures from 32 to 212 degrees. Print the out-
puts in a neat tabular format that minimizes the number of lines of output while remaining readable.

1 // Exercise 3.27 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 int celcius(int);

8 int fahrenheit(int);

9

10 int main()

11 ¢

12 cout << "Fahrenheit equivalents of Celcius temperatures:\n"
13 << "Celcius\t\tFahrenheit\n";

14

15 for (int i = 0; i <= 100; ++i)

16 cout << i << "\t\t" << fahrenheit(i) << '\n'j;

17

18 cout << "\nCelcius equivalents of Fahrenheit temperatures:"
19 << "\nFahrenheit\tCelcius\n";

20

21 for (int j = 32; j <= 212; ++j)

22 cout << j << "\t\t" << celcius(j) << '\n';

23

24 cout << endl;

25

26 return 0;

27 1%

28

29 int celcius(int fTemp)

30 ¢
31 return static_cast< int > (5.0 / 9.0 * (fTemp - 32));
32)

33
34 int fahrenheit(int cTemp)

35 {

36 return static_cast< int > (9.0 / 5.0 * cTemp + 32);
37 3

Fahrenheit equivalents of Celcius temperatures:

Celcius Fahrenheit
0 32
1 33
2 35

e oo

Celcius equivalents of Fahrenheit temperatures:

Fahrenheit Celcius
32 0
33 0
34 1

.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

80 Functions Solutions

3.28 Write a function that returns the smallest of three double-precision, floating-point numbers.

Chapter 3

1 // Exercise 3.28 Solution

2 #include <iostream>

3 using std::cout;

4 using std::endl;

5 using std::cin;

6

7 double smallest3(double, double, double);
8

9 int main()

10 ¢

11 double x, vy, Z;

12

13 cout << "Enter three numbers: ";

14 cin >> x >> y >> z;

15 cout << "The smallest value is " << smallest3(x, y, 2) << endl;
16

17 return 0;

18 13

19

20 double smallest3(double smallest, double b, double c)
21 ¢

22 if (b < smallest && c > smallest)
23 return b;

24 else if (¢ < smallest)

25 return c;

26 else

27 return smallest;

28

Enter three numbers: 4.3 6.77 9.76
The smallest value is 4.3

3.29 An integer number is said to be a perfect number if the sum of its factors, including 1 (but not the number itself), is equal
to the number. For example, 6 is a perfect number, because 6 = 1 + 2 + 3. Write a function perfect that determines whether pa-
rameter number is a perfect number. Use this function in a program that determines and prints all the perfect numbers between 1
and 1000. Print the factors of each perfect number to confirm that the number is indeed perfect. Challenge the power of your com-

puter by testing numbers much larger than 1000.

// Exercise 3.29 Solution
#include <iostream>

using std::cout;
using std::endl;

bool perfect(int);

int main()

ORWN—-0O0OOVONOCGEAEWN=—

{
cout << "For the integers from 1 to 1000:\n";
for (int j = 2; j <= 1000; ++3j)
if (perfect(j))
cout << j << " is perfect\n";

16
17 cout << endl;
18
19 return 0;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 81

20

21

22 ©bool perfect(int value)

23 {

24 int factorSum = 1;

25

26 for (int i = 2; i <= value / 2; ++i)
27 if (value % i == 0)

28 factorSum += i;

29

30 return factorSum == value ? true : false;
31 1}

For the integers from 1 to 1000:
6 is perfect

28 is perfect

496 is perfect

3.30 An integer is said to be prime if it is divisible by only 1 and itself. For example, 2, 3, 5 and 7 are prime, but 4, 6, 8 and 9
are not.
a) Write a function that determines whether a number is prime.
b) Use this function in a program that determines and prints all the prime numbers between 1 and 10,000. How many of
these 10,000 numbers do you really have to test before being sure that you have found all the primes?
c) Initially, you might think that n/2 is the upper limit for which you must test to see whether a number is prime, but you
need only go as high as the square root ofn. Why? Rewrite the program, and run it both ways. Estimate the performance
improvement.

1 // Exercise 3.30 Part A Solution
2 #include <iostream>
3 using std::cout;

4

5 #include <iomanip>

6

7 using std::setw;

8

9 bool prime(int);

10

11 int main()

12 ¢

13 int count = 0;

14

15 cout << "The prime numbers from 1 to 10000 are:\n";
16

17 for (int loop = 2; loop <= 10000; ++loop)
18 if (prime(loop)) {

19 ++count;

20 cout << setw(6) << loop;

21

22 if (count % 10 == 0)

23 cout << '\n';

24 }

25

26 return 0;

27 1%

28

29 bool prime(int n)

30 ¢

31 for (int loop2 = 2; loop2 <= n / 2; loop2++)
32 if (n % loop2 == 0)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

82 Functions Solutions

Chapter 3

33
34
35
36

The prime numbers from 1 to 10000 are:

return false;

return true;

2 3 5 7 11 13
31 37 41 43 47 53
73 79 83 89 97 101

127 131 137 139 149 151
179 181 191 193 197 199
233 239 241 251 257 263
283 293 307 311 313 317
353 359 367 373 379 383
419 421 431 433 439 443
9739 9743 9749 9767 9769 9781
9817 9829 9833 9839 9851 9857
9901 9907 9923 9929 9931 9941

17

59
103
157
211
269
331
389
449

9787
9859
9949

19

61
107
163
223
271
337
397
457

9791
9871
9967

23

67
109
167
227
277
347
401
461

9803
9883
9973

29

71
113
173
229
281
349
409
463

9811
9887

VOO NOGBTAWN —

// Exercise 3.30 Part C Solution
#include <iostream>

using std::cout;

#include <iomanip>
using std::setw;

#include <cmath>
bool prime(int n);
int main()

{

int count = 0;

cout << "The prime numbers from 1 to 10000 are:\n";

for (int j = 2;
if (prime(j
++count;

{

cout << setw(5) << j;
if (count % 10 == 0)
cout << '\n';

}

return 0;

}

bool prime(int n)
{

for (int i =

if (n % i 0)

return false;

return true;

j <= 10000; ++3j)
))

2; 1 <= static_cast< int > (sgrt(n));

++i)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 83

The prime numbers from 1 to 10000 are:

2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71

73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
9739 9743 9749 9767 9769 9781 9787 9791 9803 9811
9817 9829 9833 9839 9851 9857 9859 9871 9883 9887
9901 9907 9923 9929 9931 9941 9949 9967 9973

3.31 Write a function that takes an integer value and returns the number with its digits reversed. For example, given the number
7631, the function should return 1367.

// Exercise 3.31 Solution
#include <iostream>

using std::cout;
using std::endl;

using std::cin;

#include <iomanip>

NVOONOGTA WN—

10 wusing std::setw;
11 using std::setfill;

13 int reverseDigits(int);
14 int width(int);

15

16 int main()

17 {

18 int number;

19

20 cout << "Enter a number between 1 and 9999: ";
21 cin >> number;

22

23 cout << "The number with its digits reversed is: "
24 << setw((width(number))) << setfill('0')
25 << reverseDigits(number)

26 << endl;

27

28 return 0;

29 1%

30

31 int reverseDigits(int n)

32 ¢

33 int reverse = 0, divisor = 1000, multiplier = 1;
34

35 while (n > 10) {

36

37 if (n >= divisor) {

38 reverse += n / divisor * multiplier;

39 n %= divisor;

40 divisor /= 10;

41 multiplier *= 10;

42 }

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

84 Functions Solutions

Chapter 3

43 else

44 divisor /= 10;
45 }

46

47 reverse += n * multiplier;
48 return reverse;

49 3

50

51 int width(int n)

52 {

53 if (n /= 1000)

54 return 4;

55 else if (n /= 100)
56 return 3;

57 else if (n /= 10)
58 return 2;

59 else

60 return 1;

61

Enter a number between 1 and 9999: 8765
The number with its digits reversed is:

5678

3.32 The greatest common divisor (GCD) of two integers is the largest integer that evenly divides each of the numbers. Write a
function ged that returns the greatest common divisor of two integers.

1 // Exercise 3.32 Solution

2 #include <iostream>

3

4 using std::cout;

5 wusing std::cin;

6

7 int ged(int, int);

8

9 int main()

10 ¢

11 int a, b;

12

13 for (int j = 1; j <= 5; ++j) {
14 cout << "Enter two integers: ";
15 cin >> a >> b;

16 cout << "The greatest common divisor of " << a << " and "
17 << b << " ig " << gcd(a, b) << "\n\n";
18 }

19

20 return 0;

21

22

23 int ged(int x, int y)

24 (
25 int greatest = 1;
26
27 for (int 1 = 2; 1 <= ((x <y) ? X: y); ++i)
28 if (x % 1i==0&& vy % 1 ==0)
29 greatest = i;
30
31 return greatest;
32 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3

Enter two integers:
The greatest common

Enter two integers:
The greatest common

Enter two integers:
The greatest common

Enter two integers:
The greatest common

Enter two integers:
The greatest common

6 8

divisor of 6 and 8 is 2

789 4

divisor of 789 and 4 is 1

9999 27

divisor of 9999 and 27 is 9

73652 8

divisor of 73652 and 8 is 4

99 11

divisor of 99 and 11 is 11

Functions Solutions 85

3.33 Write a function qualityPoints that inputs a student’s average and returns 4 if a student's average is 90100, 3 if the
average is 80—89, 2 if the average is 70-79, 1 if the average is 60—69 and 0 if the average is lower than 60.

NVOONOGTA WN—

// Exercise 3.33 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

int qualityPoints(int);

int main()

{
int average;
for (int loop = 1; loop <= 5; ++loop) {
cout << "\nEnter the student's average: ";
cin >> average;
cout << average << " on a 4 point scale is "
<< qualityPoints(average) << '\n';
}
cout << endl;
return 0;
}
int qualityPoints(int average)
{
if (average >= 90)
return 4;
else if (average >= 80)
return 3;
else if (average >= 70)
return 2;
else if (average >= 60)
return 1;
else
return 0;
}

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

86 Functions Solutions Chapter 3

Enter the student's average: 99
99 on a 4 point scale is 4

Enter the student's average: 72
72 on a 4 point scale is 2

Enter the student's average: 88
88 on a 4 point scale is 3

Enter the student's average: 65
65 on a 4 point scale is 1

Enter the student's average: 33
33 on a 4 point scale is 0

3.34 Write a program that simulates coin tossing. For each toss of the coin, the program should print Heads or Tails. Let the
program toss the coin 100 times and count the number of times each side of the coin appears. Print the results. The program should
call a separate function £1ip that takes no arguments and returns 0 for tails and 1 for heads. Note: If the program realistically sim-
ulates the coin tossing, then each side of the coin should appear approximately half the time.

1 // Exercise 3.34 Solution

2

3 #include <iostream>

4

5 using std::cout;

6 wusing std::endl;

7

8 #include <cstdlib>

9 #include <ctime>

10

11 int £lip(void);

12

13 int main()

14 {

15 int headCount = 0, tailCount = 0;
16

17 srand(time(0));

18

19 for (int loop = 1; loop <= 100; loop++) {
20

21 if (£lip() == 0) {

22 tailCount++;

23 cout << "Tails ";

24 }

25 else {

26 headCount++;

27 cout << "Heads ";

28 }

29
30 if (loop % 10 == 0)

31 cout << '\n';
32 }
33

34 cout << "\nThe total number of Heads was "
35 << headCount << "\nThe total number of Tails was "
36 << tailCount << endl;

37
38 return 0;
39 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 87

40

41 int flip(void)

42

43 return rand() % 2;
44

Tails Heads Heads Heads Heads Tails Tails Tails Tails Tails
Tails Heads Heads Tails Tails Heads Tails Tails Heads Tails
Heads Tails Heads Heads Tails Tails Tails Heads Tails Heads
Heads Heads Heads Tails Heads Heads Heads Tails Heads Heads
Heads Heads Heads Heads Heads Heads Tails Heads Tails Heads
Heads Tails Tails Heads Heads Heads Heads Heads Tails Tails
Tails Heads Heads Heads Tails Tails Heads Heads Heads Heads
Heads Tails Tails Heads Tails Heads Tails Tails Heads Heads
Heads Tails Heads Tails Tails Tails Heads Tails Heads Heads
Heads Heads Heads Heads Heads Tails Tails Heads Heads Heads

The total number of Heads was 60
The total number of Tails was 40

3.35 Computers are playing an increasing role in education. Write a program that will help an elementary school student learn
multiplication. Use rand to produce two positive one-digit integers. It should then type a question such as:

How much is 6 times 7?

The student then types the answer. Your program checks the student's answer. If it is correct, print "Very good! ", and then ask
another multiplication question. If the answer is wrong, print "No. Please try again." and then let the student try the same
question again repeatedly until the student finally gets it right.

1 // Exercise 3.35 Solution

2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6 wusing std::cin;

7

8 #include <cstdlib>

9 #include <ctime>

10

11 wvoid multiplication(void);
12

13 int main()

14 ¢{

15 srand(time(0));

16 multiplication();

17 return 0;

18 3

19

20 wvoid multiplication(void)
21 {

22 int %, y, response = 0;

23

24 cout << "Enter -1 to End.\n";
25

26 while (response != -1) {
27 x = rand() % 10;

28 y = rand() % 10;

29

30 cout << "How much is " << x << " times " << y << " (-1 to End)? ";

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

88 Functions Solutions

Chapter 3

31 cin >> response;

32

33 while (response != -1 && response != x * y) {
34 cout << "No. Please try again.\n? ";
35 cin >> response;

36 }

37

38 if (response != -1)

39 cout << "Very good!\n\n";

40 }

41

42 cout << "That's all for now. Bye." << endl;
43 3

Enter -1 to End.

How much is 4 times 9 (-1 to End)? 36

Very good!

How much is 7 times 0 (-1 to End)? 0

Very good!

How much is 7 times 8 (-1 to End)? 55

No. Please try again.

? 56

Very good!

How much is 5 times 0 (-1 to End)? -1

That's all for now. Bye.

3.36 The use of computers in education is referred to as computer-assisted instruction (CAI). One problem that develops in CAI
environments is student fatigue. This can be eliminated by varying the computer's dialogue to hold the student's attention. Modify
the program of Exercise 3.35 so the various comments are printed for each correct answer and each incorrect answer as follows:

Responses to a correct answer

Very good!
Excellent!
Nice work!
Keep up the good work!

Responses to an incorrect answer

No.
Wrong.

Please try again.

Try once more.

Don't give up!

No.

Keep trying.

Use the random number generator to choose a number from 1 to 4 to select an appropriate response to each answer. Use a switch

structure to issue the responses.

// Exercise 3.36 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

#include <cstdlib>
#include <ctime>

OVONOOGAWN—

—

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 89

11 void correctMessage(void);
12 void incorrectMessage(void);
13 void multiplication(void);

14

15 int main()

16 {

17 srand(time(0));

18 multiplication();

19

20 return 0;

21 3%

22

23 void correctMessage(void)

24 {

25 switch (rand() % 4) {

26 case 0:

27 cout << "Very good!";

28 break;

29 case 1:

30 cout << "Excellent!";

31 break;

32 case 2:

33 cout << "Nice work!";

34 break;

35 case 3:

36 cout << "Keep up the good work!";
37 break;

38 }

39

40 cout << "\n\n";

41

42

43 +void incorrectMessage(void)

44 {

45 switch (rand() % 4) {

46 case 0:

47 cout << "No. Please try again.";
48 break;

49 case 1:

50 cout << "Wrong. Try once more.";
51 break;

52 case 2:

53 cout << "Don't give up!";
54 break;

55 case 3:

56 cout << "No. Keep trying.";
57 break;

58 }

59

60 cout << "\n? ";

61

62

63 void multiplication(wvoid)

64 {

65 int %, y, response = 0;

66

67 while (response != -1) {

68 x = rand() % 10;

69 y = rand() % 10;

70

71 cout << "How much is " << x << " times " << y
72 << " (-1 to End)? ";

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

90 Functions Solutions

Chapter 3

cin >> response;

while (response != -1 && response != x * y) {

incorrectMessage();
cin >> response;

}

if (response != -1) {
correctMessage() ;

}

}

cout << "That's all for now. Bye." << endl;

Enter -1 to End.

How much is 4 times 9 (-1 to

Very good!

How much is 7 times 0 (-1 to End)? 0
Nice Work!

How much is 7 times 8 (-1 to
No.

Please try again.

? 56
Excellent!

How much is 5 times 0 (-1 to

That's all for now. Bye.

3.37

End)? 36

End)? 55

End)? -1

More sophisticated computer-aided instruction systems monitor the student’s performance over a period of time. The de-
cision to begin a new topic is often based on the student’s success with previous topics. Modify the program of Exercise 3.36 to
count the number of correct and incorrect responses typed by the student. After the student types 10 answers, your program should
calculate the percentage of correct responses. If the percentage is lower than 75 percent, your program should print "Please ask
your instructor for extra help" and then terminate.

NVOONOGTA WN —

// Exercise 3.37 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

#include <cstdlib>
#include <ctime>

void multiplication(void);
void correctMessage(void);

void incorrectMessage(void);

int main()

{
srand(time(0));
multiplication();
return 0;

}

©2000. Deitel & Associates, Inc. and Prentice Hall

. All Rights Reserved.

Chapter 3

Functions Solutions

91

void multiplication(void)

if (static_cast< double > (right) / (right + wrong) <
cout << "Please ask your instructor for extra help.\n";

{
int x, y, respomnse,
for (int i = 1; i
X = rand() % 10;
y = rand() % 10;
cout << "How much is " << x <<
cin >> response;
while (response
++wrong;
incorrectMessage();
cin >> response;
}
++right;
correctMessage() ;
}
cout << "That's all for now.
}
void correctMessage(void)
{
switch (rand() % 4) {
case 0:
cout << "Very good!";
break;
case 1:
cout << "Excellent!";
break;
case 2:
cout << "Nice work!";
break;
case 3:
cout <<
break;
}
cout << "\n\n";
}
void incorrectMessage(void)
{
switch (rand() % 4) {
case 0:
cout <<
break;
case 1:
cout <<
break;
case 2:
cout << "Don't give up!";
break;
case 3:
cout << "No. Keep trying.";
break;

"Keep up the good work!";

"No. Please try again.";

"Wrong. Try once more.";

right = 0, wrong

<= 10; ++i) {

" times " << y <<

'=x *y) {

Bye." << endl;

.75)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

92 Functions Solutions Chapter 3

85 }

86

87 cout << "\n? ";
88

How much is 3 times 7? 21
Nice work!

How much is 5 times 9? 45
Very good!

That's all for now. Bye.

3.38 Write a program that plays the game of “guess the number” as follows: Your program chooses the number to be guessed
by selecting an integer at random in the range 1 to 1000. The program then types:

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.

The player then types a first guess. The program responds with one of the following:

1l. Excellent! You guessed the number!
Would you like to play again (y or n)?

2. Too low. Try again.

3. Too high. Try again.

If the player's guess is incorrect, your program should loop until the player finally gets the number right. Your program shouldkeep
telling the player Too high or Too low to help the player “zero in” on the correct answer.

// Exercise 3.38 Solution
#include <iostream>

using std::cout;
using std::cin;

#include <cstdlib>
#include <ctime>

NVOONOCORARWN —

10 void guessGame(void);
11 bool isCorrect(int, int);

13 int main()

14 {

15 srand(time(0));
16 guessGame () ;

18 return 0;
19 3

21 void guessGame(void)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions

93

22 {

23 int answer, guess;

24 char response;

25

26 do {

27 answer = 1 + rand() % 1000;

28 cout << "\nI have a number between 1 and 1000.\n"
29 << "Can you guess my number?\nPlease type your"
30 << " first guess.\n? ";

31 cin >> guess;

32

33 while (!isCorrect(guess, answer))

34 cin >> guess;

35

36 cout << "\nExcellent! You guessed the number!\n"
37 << "Would you like to play again?\nPlease type (y/n)? ";
38 cin >> response;

39

40 } while (response == 'y');

41 1}

42

A3 bool isCorrect(int g, int a)

44 {

45 if (g == a)

46 return true;

47

48 if (g < a)

49 cout << "Too low. Try again.\n? ";

50 else

51 cout << "Too high. Try again.\n? ";

52

53 return false;

54

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

94 Functions Solutions

I have a number between 1 and 1000.

Can you guess my number?
Please type your first guess.
? 500

Too high. Try again.

? 250

Too low. Try again.
? 375

Too low. Try again.
? 438

Too high. Try again.
? 405

Too high. Try again.
? 380

Too low. Try again.
? 393

Too low. Try again.
? 399

Too high. Try again.
? 396

Too low. Try again.
? 398

Too high. Try again.
? 397

Excellent! You guessed the number!

Would you like to play again?
Please type (y/n)? n

Chapter 3

3.39 Modify the program of Exercise 3.38 to count the number of guesses the player makes. If the number is 10 or fewer, print
Either youknowthe secret oryou got lucky! If the player guesses the number in 10 tries, then printAhah ! Youknow
the secret! If the player makes more than 10 guesses, then print You should be able todo better! Why should it take
no more than 10 guesses? Well, with each “good guess” the player should be able to eliminate half of the numbers. Now show why
any number from 1 to 1000 can be guessed in 10 or fewer tries.

// Exercise 3.39 Solution
#include <iostream>

using std::cout;
using std::cin;

#include <cstdlib>
#include <ctime>

NVOONOOAWN —

10 void guessGame(void);
11 bool isCorrect(int, int);
12 wvoid display(int);

14 int main()

15 {

16 srand(time(0));

17 guessGame () ;

18

19 return 0;

20

21

22 +wvoid guessGame(void)

23 {

24 int answer, guess, total

©2000. Deitel & Associates, Inc. and Prentice Hall

. All Rights Reserved.

Chapter 3 Functions Solutions 95

25 char response;

26

27 do {

28 answer = 1 + rand() % 1000;

29 cout << "I have a number between 1 and 1000."
30 << "\nCan you guess my number?\nPlease type"
31 << " your first guess.\n? ";

32 cin >> guess;

33

34 while (!isCorrect(guess, answer)) {

35 cin >> guess;

36 ++total;

37 }

38

39 cout << "\nExcellent! You guessed the number!\n";
40

41 display(total);

42

43 cout << "Would you like to play again?\nPlease type (y/n)? ";
44 cin >> response;

45

46 } while (response == 'y');

47 3

48

49 bool isCorrect(int g, int a)

50 ¢

51 if (g == a)

52 return true;

53

54 if (g < a)

55 cout << "Too low. Try again.\n? ";

56 else

57 cout << "Too high. Try again.\n? ";

58

59 return false;

60

61

62 void display(int t)

63 {

64 if (£t < 10)

65 cout << "Either you know the secret or you got lucky!\n";
66 else if (t == 10)

67 cout << "Ahah! You know the secret!\n";

68 else

69 cout << "You should be able to do better!\n\n";
70

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

96 Functions Solutions Chapter 3

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.

? 500

Too high. Try again.
? 250

Too low. Try again.
? 375

Too high. Try again.
? 313

Too low. Try again.
? 344

Too low. Try again.
? 360

Too high. Try again.
? 352

Too high. Try again.
? 348

Too low. Try again.
? 350

Too low. Try again.
? 351

Excellent! You guessed the number!
Ahah! You know the secret!

Would you like to play again?
Please type (y/n)? n

Press any key to continue

3.40 Write a recursive function power (base, exponent) that, when invoked, returns
base exponent

For example, power (3,4) =3 * 3 * 3 * 3. Assume that exponent is an integer greater than or equal to 1. Hint: The recursion
step would use the relationship

base ¢xporent = hase . hase €ponent-1

and the terminating condition occurs when exponent is equal to 1 because

base! = base

1 // Exercise 3.40 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 wusing std::cin;

7

8 1long power(long, long);

9

10 int main()

11 ¢

12 long b, e;

13

14 cout << "Enter a base and an exponent: ";
15 cin >> b >> e;

16 cout << b << " raised to the " << e << " ig "

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 97

<< power(b, e) << endl;

return 0;

}
long power(long base, long exponent)
{
return exponent == 1 ? base : base * power(base, exponent - 1);
}

Enter a base and an exponent: 3 4
3 raised to the 4 is 81

3.41

The Fibonacci series

0,1,1,2,3,5,8,13,21, ...

begins with the terms O and 1 and has the property that each succeeding term is the sum of the two preceding terms. a) Write a
nonrecursive function £ibonacci (n) that calculates thenth Fibonacci number. b) Determine the largest Fibonacci number that
can be printed on your system. Modify the program of part a) to use double instead of int to calculate and return Fibonacci num-
bers, and use this modified program to repeat part b).

NVOONOOAWN —

// Exercise 3.41 Part A Solution

// NOTE: This exercise was accidently placed in this
// chapter. The solution utilizes ARRAYS which are
// introduced in the next chapter.

#include <iostream>

using std::cout;
using std::endl;

int MAX = 22; // the maximum number for which the
// fibonacci value can be calculated
// on 2-byte integer systems

int fibonacci(int);

int main()

{
for (int loop = 0; loop <= MAX; ++loop)
cout << "fibonacci(" << loop << ") = " << fibonacci(loop)
<< n \nll;
cout << endl;
return O0;
}
int fibonacci(int n)
{
int £ib[23 1;
fib[0 1 = 0;
fib[1] = 1;
for (int j = 2; j <= n; ++j)
£fib[j 1 = £ib[j - 1 1 + £ib[j - 2 1;

return fib[n];

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

98 Functions Solutions

Chapter 3

37 3

fibonacci(0) = 0
fibonacci(l) = 1
fibonacci(2) = 1
fibonacci(3) = 2
fibonacci(4) = 3
fibonacci(5) = 5
fibonacci(6) = 8
fibonacci(7) = 13
fibonacci(8) = 21
fibonacci(9) = 34
fibonacci(10) = 55
fibonacci(1l1l) = 89
fibonacci(12) = 144
fibonacci(13) = 233
fibonacci(14) = 377
fibonacci(15) = 610
fibonacci(16) = 987
fibonacci(17) = 1597
fibonacci(18) = 2584
fibonacci(19) = 4181
fibonacci(20) = 6765
fibonacci(21) = 10946
fibonacci(22) = 17711
fibonacci(23) = 28658

1 // Exercise 3.41 Part B Solution

2 // NOTE: This exercise was accidently placed in this
3 // chapter. The solution utiliizes ARRAYS which are
4 // introduced in the next chapter.

5 $#include <iostream>

6

7 using std::cout;

8 using std::endl;

9 using std::ios;

10

11 #include <iomanip>

13 using std::setprecision;
14 using std::setiosflags;

16 double fibonacci(int);

18 int main()
19 {

20 cout << setiosflags(ios::fixed | ios::showpoint);

22 for (int loop = 0; loop < 100; ++loop)
23 cout << setprecision(1) << "fibonacci(" << loop << ") = "
24 << fibonacci(loop) << endl;

26 return 0;

27 1}

29 double fibonacci(int n)
30 {

31 double f£ib[100]:;

33 fib[0 1 = 0.0;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 99

34 fib[1] = 1.0;

35

36 for (int j = 2; j <= n; j++)

37 fib[j 1 = £ib[j - 1 1 + £ib[j - 2 1;
38

39 return fib[n];

40 3

fibonacci(0)
fibonacci (1)
fibonacci (2)
fibonacci (3)
fibonacci (4)
fibonacci (5)
fibonacci (6)
fibonacci (7)

P ouwdNdRLrPERr o
.
Oo0oooooo

w .
.
o

fibonacci (96)
fibonacci (97)
fibonacci (98)
fibonacci (99)

51680708854858326000.0
83621143489848426000.0
135301852344706760000.0
218922995834555200000.0

3.42 (Towers of Hanoi) Every budding computer scientist must grapple with certain classic problems. The Towers of Hanoi (see
Fig.3.28) is one of the most famous of these. Legend has it that in a temple in the Far East, priests are attempting to move a stack
of disks from one peg to another. The initial stack had 64 disks threaded onto one peg and arranged from bottom to top by decreasing
size. The priests are attempting to move the stack from this peg to a second peg under the constraints that exactly one disk is moved
at a time, and at no time may a larger disk be placed above a smaller disk. A third peg is available for temporarily holding disks.
Supposedly, the world will end when the priests complete their task, so there is little incentive for us to facilitate their efforts.

Let us assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to develop an algorithm that will
print the precise sequence of peg-to-peg disk transfers.

If we were to approach this problem with conventional methods, we would rapidly find ourselves hopelessly knotted up in
managing the disks. Instead, if we attack the problem with recursion in mind, it immediately becomes tractable. Moving n disks
can be viewed in terms of moving only n - 1 disks (hence, the recursion), as follows:

Fig. 3.1 The Towers of Hanoi for the case with four disks.

a) Move n - 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.
b) Move the last disk (the largest) from peg 1 to peg 3.
¢) Move then - 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.

The process ends when the last task involves moving n = 1 disk, i.e., the base case. This is accomplished by trivially moving
the disk without the need for a temporary holding area.

Write a program to solve the Towers of Hanoi problem. Use a recursive function with four parameters:

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

100 Functions Solutions Chapter 3

a) The number of disks to be moved
b) The peg on which these disks are initially threaded
¢) The peg to which this stack of disks is to be moved
d) The peg to be used as a temporary holding area
Your program should print the precise instructions it will take to move the disks from the starting peg to the destination peg.
For example, to move a stack of three disks from peg 1 to peg 3, your program should print the following series of moves:
1 ® 3 (This means move one disk from peg 1 to peg 3.)

1® 2
3® 2
1® 3
2® 1
2® 3
1® 3
1 // Exercise 3.42 Solution
2 $#include <iostream>
K]
4 using std::cout;
5 using std::cin;
6
7 void towers(int, int, int, int);
8
9 int main()
10 ¢
11 int nDisks;
12
13 cout << "Enter the starting number of disks: ";
14 cin >> nDisks;
15 towers(nDisks, 1, 3, 2);
16
17 return 0;
18 1}
19
20 wvoid towers(int disks, int start, int end, int temp)
21 {
22 if (disks == 1) {
23 cout << start << " --> " << end << '\n';
24 return;
25 }
26
27 // move disks - 1 disks from start to temp
28 towers(disks - 1, start, temp, end);
29
30 // move last disk from start to end
31 cout << start << " --> " << end << '\n';
32
33 // move disks - 1 disks from temp to end
34 towers(disks - 1, temp, end, start);
35 3}

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 101

Enter the starting number of disks: 4

1 --> 2
1-->3
2 --> 3
1 --> 2
3 --> 1
3 --> 2
1 --> 2
1-->3
2 --> 3
2 --> 1
3 --> 1
2 --> 3
1 --> 2
1-->3
2 --> 3

3.43 Any program that can be implemented recursively can be implemented iteratively, although sometimes with more difficulty
and less clarity. Try writing an iterative version of the Towers of Hanoi. If you succeed, compare your iterative version with the
recursive version you developed in Exercise 3.42. Investigate issues of performance, clarity and your ability to demonstrate the cor-
rectness of the programs.

3.44 (Visualizing Recursion) It is interesting to watch recursion “in action.” Modify the factorial function of Fig. 3.14 to print
its local variable and recursive call parameter. For each recursive call, display the outputs on a separate line and add a level of in-
dentation. Do your utmost to make the outputs clear, interesting and meaningful. Your goal here is to design and implement an out-
put format that helps a person understand recursion better. You may want to add such display capabilities to the many other
recursion examples and exercises throughout the text.

1 // Exercise 3.44 Solution
2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 #include <iomanip>

8

9 using std::setw;

10

11 1long factorial(long);
12 wvoid printRecursion(int);

13

14 int main()

15 {

16 for (int i = 0; i <= 10; ++i)

17 cout << setw(3) << i << "! = " << factorial(i) << endl;
18

19 return 0;

20

21

22 1long factorial(long number)

23 {

24 if (number <= 1)

25 return 1;

26 else {

27 printRecursion(number);

28 return (number * factorial(number - 1));
29 }

30 3

31

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

102 Functions Solutions Chapter 3

32 void printRecursion(int n)

33 {

34 cout << "number =" << setw(n) << n << '\n';
35

L

0!

1! =
number
2! = 2
number
number
3! = 6
number
number
number
4! = 24
number
number
number
number
51 = 12
number
number
number
number
number
number
number
number
number
number
number
number
number
number
10! = 3628800

nnn nn
w

nn
'

nnnoimnim

nmnunnmnyg
)]
(o]

nnn
w

3.45 The greatest common divisor of integers x and y is the largest integer that evenly divides both x and y. Write a recursive
function ged that returns the greatest common divisor of x and y. The ged of x and y is defined recursively as follows: If y is
equal to 0, then ged (x,y) is x; otherwiseged (x, vy) isged(¥y, x%Yy), where % is the modulus operator.

1 // Exercise 3.45 Solution

2 #include <iostream>

3

4 using std::cout;

5 wusing std::endl;

6 using std::cin;

7

8 unsigned gcd(unsigned int, unsigned int);
9

10 int main()

11 {

12 unsigned x, y, gcDiv;

13

14 cout << "Enter two integers: ";
15 cin >> x >> y;

16

17 geDiv = ged(%, vy)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 103

18 cout << "Greatest common divisor of " << x << " and "

19 << ¥y << " is " << gcDiv << endl;

20

21 return 0;

22)

23

24 unsigned gcd(unsigned xMatch, unsigned yMatch)

25 {

26 return yMatch == 0 ? xMatch : gcd(yMatch, xMatch % yMatch);
27

Enter two integers: 32727 9
Greatest common divisor of 32727 and 9 is 3

3.46 Canmain be called recursively? Write a program containing a functionmain. Include static local variable count and
initialize it to 1. Postincrement and print the value of count each time main is called. Compile your program. What happens?

1 // Exercise 3.46 Solution
2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 int main()

8 {

9 static int count = 1;
10

11 ++count;

12 cout << count << endl;
13 main();

14

15 return 0;

16 1}

1

2

3

12298

12299

12300

12301

12302

12303

12304

3.47 Exercises 3.35 through 3.37 developed a computer-assisted instruction program to teach an elementary school student mul-
tiplication. This exercise suggests enhancements to that program.
a) Modify the program to allow the user to enter a grade-level capability. A grade level of 1 means to use only single-digit
numbers in the problems, a grade level of two means to use numbers as large as two digits, etc.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

104 Functions Solutions Chapter 3

b) Modify the program to allow the user to pick the type of arithmetic problems he or she wishes to study. An option of 1
means addition problems only, 2 means subtraction problems only, 3 means multiplication problems only, 4 means di-
vision problems only, and 5 means to randomly intermix problems of all these types.

1 // Exercise 3.47 Part A Solution
2 $#include <iostream>

K]

4 using std::cout;

5 using std::endl;

6 wusing std::cin;

7

8 #include <cstdlib>

9 $#include <ctime>

10

11 int randvalue(int);

12 void multiplication(void);

13 void correctMessage(void);

14 void incorrectMessage(void);

15

16 int main()

17 {

18 srand(time(0));

19 multiplication();

20

21 return 0;

22)

23

24 int randvalue(int level)

25 {

26 switch (level) {

27 case 1:

28 return rand() % 10;

29 case 2:

30 return rand() % 100;

31 case 3:

32 return rand() % 1000;

33 default:

34 return rand() % 10;

35 }

36 1}

37

38 +void multiplication(wvoid)

39 {

40 int x, y, gradeLevel, right = 0, wrong = 0;
41 unsigned int response;

42

43 cout << "Enter the grade-level (1 to 3): ";
44 cin >> gradelevel;

45

46 for (int i = 1; i <= 10; i++) {
47 x = randValue(gradelLevel);
48 y = randValue(gradeLevel);
49

50 cout << "How much is " << x << " times " << y << "? ";
51 cin >> response;

52

53 while (response != x * y) {
54 ++wWrong;

55 incorrectMessage();

56 cin >> response;

57 }

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 105

58

59 ++right;

60 correctMessage() ;

61 }

62

63 if (static_cast< double > (right) / (right + wrong) < .75)
64 cout << "Please ask your instructor for extra help.\n";
65

66 cout << "That's all for now. Bye." << endl;
67 1}

68

69 ~void correctMessage(void)

70 {

71 switch (rand() % 4) {

72 case 0:

73 cout << "Very good!";

74 break;

75 case 1:

76 cout << "Excellent!";

77 break;

78 case 2:

79 cout << "Nice work!";

80 break;

81 case 3:

82 cout << "Keep up the good work!";
83 break;

84 }

85

86 cout << "\n\n";

87

88

89 +void incorrectMessage(void)

90 {

91 switch (rand() % 4) {

92 case 0:

93 cout << "No. Please try again.";
94 break;

95 case 1:

96 cout << "Wrong. Try once more.";
97 break;

98 case 2:

99 cout << "Don't give up!";

100 break;

101 case 3:

102 cout << "No. Keep trying.";

103 break;

104 }

105

106 cout << "\n? ";

107 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

106 Functions Solutions Chapter 3

Enter the grade-level (1 to 3): 3
How much is 643 times 462? 297066
Very good!

How much is 763 times 731? 537753
Don't give up!

? 557753

Keep up the good work!

How much is 382 times 120?

// Exercise 3.47 Part B Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

#include <cstdlib>
#include <ctime>

NV ONOOTRARWN—

11 int menu(void);

12 void arithmetic(void);

13 wvoid correctMessage(void);
14 void incorrectMessage(void);

15

16 int main()

17

18 srand(time(0));

19 arithmetic();

20

21 return 0;

22 1%

23

24 int menu(void)

25 {

26 int choice;

27

28 do {

29 cout << "Choose type of problem to study."
30 << "\nEnter: 1 for addition, 2 for subtraction"
31 << "\nEnter: 3 for multiplication, 4 for division"
32 << "\nEnter: 5 for a combination of 1 through 4\n? ";
33 cin >> choice;

34

35 } while (choice < 1 || choice > 5);

36

37 return choice;

38 1}

39

40 +void incorrectMessage(void)

41

42 switch (rand() % 4) {

43 case 0:

44 cout << "No. Please try again.";

45 break;

46 case 1:

47 cout << "Wrong. Try once more.";

48 break;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 107
49 case 2:

50 cout << "Don't give up!";
51 break;

52 case 3:

53 cout << "No. Keep trying.";
54 break;

55 }

56

57 cout << "\n? ";

58 3

59

60 wvoid correctMessage(void)

61 {

62 switch (rand() % 4) {

63 case 0:

64 cout << "Very good!";

65 break;

66 case 1:

67 cout << "Excellent!";

68 break;

69 case 2:

70 cout << "Nice work!";

71 break;

72 case 3:

73 cout << "Keep up the good work!";
74 break;

75 }

76

77 cout << "\n\n";

78)

79

80 wvoid arithmetic(void)
81 {

82 int x, y, response, answer, selection, right = 0, wrong = 0;
83 int type, problemMix;

84 char op;

85

86 selection = menu();

87 type = selection;

88

89 for (int i = 1; i <= 10; ++i) {
90 x = rand() % 10;

91 y = rand() % 10;

92

93 if (selection == 5) {

94 problemMix = 1 + rand() % 4;
95 type = problemMix;

96 }

97

98 switch (type) {

99 case 1:

100 op = '+';

101 answer = xX + Y;

102 break;

103 case 2: // note negative answers can exist
104 op = '-';

105 answer = x - y;

106 break;

107 case 3:

108 op = '*';

109 answer = x * y;

110 break;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

108 Functions Solutions

Chapter 3

111 case 4: // note this is integer division
112 op = '/"';

113

114 if (y ==0) {

115 y = 1; // eliminate divide by zero error
116 answer = x / y;

117 }

118 else {

119 X *= y; // create "nice" division

120 answer = x / y;

121 }

122

123 break;

124 }

125

126 cout << "How much is " << X << " " << Op << " " << y << "? v,
127 cin >> response;

128

129 while (response != answer) {

130 ++wrong;

131 incorrectMessage();

132 cin >> response;

133 }

134

135 ++right;

136 correctMessage();

137 }

138

139 if (static_cast< double > (right) / (right + wrong) < .75)
140 cout << "Please ask your instructor for extra help.\n";
141

142 cout << "That's all for now. Bye." << endl;

143 3

Choose type

of problem to study.

Enter: 1 for addition, 2 for subtraction
Enter: 3 for multiplication, 4 for division
Enter: 5 for a combination of 1 through 4

? 5
How much is
Keep up the

How much is
Keep up the

How much is
Excellent!

How much is
Nice work!

How much is
Very good!

How much is

7 * 5?2 35
good work!

45 / 52 9
good work!

9 * 5?2 45

4 + 67

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 109

3.48 Write function distance that calculates the distance between two points (x/, yI) and (x2, y2). All numbers and return
values should be of type double.

// Exercise 3.48 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;
using std::ios;

VOO NOGBTAWN —

#include <iomanip>

11 using std::setprecision;
12 using std::setiosflags;

13

14 #$#include <cmath>

15

16 double distance(double, double, double, double);

17

18 int main()

19 {

20 double x1, yl, x2, y2, dist;

21

22 cout << "Enter the first point: ";

23 cin >> x1 >> yl;

24

25 cout << "Enter the second point: ";

26 cin >> x2 >> y2;

27

28 dist = distance(x1, yl1l, x2, y2);

29

30 cout << setiosflags(ios::fixed | ios::showpoint)
31 << "Distance between (" << setprecision(1) << xl1 << ", ©
32 <<yl << ") and (" << X2 << ", " << y2 << ") ig "
33 << dist << endl;

34

35 return 0;

36 1}

37

38 double distance(double xOne, double yOne, double xTwo, double yTwo)
39

40 return sqrt(pow(xOne - xTwo, 2) + pow(yOne - yTwo, 2));

41 3

Enter the first point: 8 9
Enter the second point: 0 1
Distance between (8.0, 9.0) and (0.0, 1.0) is 11.3

3.49 What is wrong with the following program?

// ex03_49.cpp
#include <iostream>

using std::cin;
using std::cout;

int main()

{

ONOCOTAWN —

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

110 Functions Solutions Chapter 3

9 int c;

10

11 if ((¢ = cin.get()) != EOF) {
12 main();

13 cout << c;

14 }

15

16 return 0;

17 1}

ANS: Standard C++ does not allow recursive calls of main however, on nonstandard compilers, this program would
print the characters input in reverse order.

3.50 What does the following program do?

1 // ex03_50.cpp

2 $#include <iostream>

3

4 using std::cout;

5 using std::cin;

6 using std::endl;

7

8 int mystery(int, int);

9

10 int main()

11 ¢

12 int x, y;

13

14 cout << "Enter two integers: ";
15 cin >> x >> y;

16 cout << "The result is " << mystery(x, y) << endl;
17 return 0;

18 3

19

20 // pParameter b must be a positive
21 // integer to prevent infinite recursion
22 int mystery(int a, int b)

23 {

24 if (b ==1)

25 return a;

26 else

27 return a + mystery(a, b - 1);
28

Enter two integers: 8 2
The result is 16

3.51 After you determine what the program of Exercise 3.50 does, modify the program to function properly after removing the
restriction that the second argument be nonnegative.

// Exercise 3.51 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

ONOCOAWN—

int mystery(int, int);

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 111

9

10 int main()

11 {

12 int x, y;

13

14 cout << "Enter two integers: ";

15 cin >> x >> y;

16 cout << "The result is " << mystery(x, y) << endl;
17 return 0;

18 3

19

20 int mystery(int a, int b)

21

22 if ((a<0&&b<0) || b<o0) {

23 a *= -1;

24 b *= -1;

25 }

26

27 return b == 1 ? a : a + mystery(a, b - 1);
28

Enter two integers: -8 8
The result is -64

3.52 Write a program that tests as many of the math library functions in Fig. 3.2 as you can. Exercise each of these functions by
having your program print out tables of return values for a diversity of argument values.

// Exercise 3.52 Solution
#include <iostream>

using std::cout;
using std::endl;

using std::ios;

#include <iomanip>

VOO NOGBTAWN —

10 using std::setw;
11 using std::setprecision;
12 using std::setiosflags;

13

14 #$#include <cmath>

15

16 int main()

17 {

18 cout << "function"; // header

19

20 for (int a = 1; a < 6; ++a)

21 cout << setw(12) << a << ' ';

22

23 cout << setiosflags(ios::fixed | ios::showpoint) << "\n\nsqrt() ";
24

25 for (int b = 1; b < 6; ++b)

26 cout << setw(12) << setprecision(2) << sqgqrt(b) << ' ';
27

28 cout << "\nexp() ",

29

30 for (int ¢ = 1; c < 6; ++c)

31 cout << setw(12) << setprecision(2) << exp(¢) << ' ';
32

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

112 Functions Solutions

Chapter 3

setprecision(2

setprecision(2

33 cout << "\nlog() ",

34

35 for (int d = 1; 4 < 6; ++d)
36 cout << setw(12) <<

37

38 cout << "\nloglO() ";

39

40 for (int e = 1; e < 6; ++e)
41 cout << setw(12) <<

42

43 cout << "\npow(2,x)";

44

45 for (int £ = 1; £ < 6; ++f)

46 cout << setw(12) << setprecision(2
47

48 cout << "\n\n\nfunction"; // header
49

50 for (double g = -1.5; g < 3.0; g += 1.1
51 cout << setw(12) << setprecision(2
52

53 cout << "\n\n\nfabs() "

54

55 for (double h = -1.5; h < 3.0; h += 1.1
56 cout << setw(12) << setprecision(2
57

58 cout << "\nceil() ";

59

60 for (double i = -1.5; i < 3.0; i += 1.1
61 cout << setw(12) << setprecision(2
62

63 cout << "\nfloor() ";

64

65 for (double j = -1.5; j < 3.0; j += 1.1
66 cout << setw(12) << setprecision(2
67

68 cout << "\nsin() "

69

70 for (double k = -1.5; k < 3.0; k += 1.1
71 cout << setw(12) << setprecision(2
72

73 cout << "\ncos() ",

74

75 for (double 1 = -1.5; 1 < 3.0; 1 += 1.1
76 cout << setw(12) << setprecision(2
77

78 cout << "\ntan() ",

79

80 for (double m = -1.5; m < 3.0; m += 1.1
81 cout << setw(12) << setprecision(2
82

83 cout << endl;

84 return 0;

85 1}

)

)

)

)

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

log(d) << ' ';

loglOo(e) << '

pow(2, £) << '
g << ' ';
fabs(h) << ' ';

ceil(i) << ' !

floor(j) << '

sin(k) << ' ';
cos(1) << ' ';
tan(m) << ' ';

-
I

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 113

function 1 2 3 4 5
sqgrt () 1.00 1.41 1.73 2.00 2.24
exp () 2.72 7.39 20.09 54.60 148.41
log() 0.00 0.69 1.10 1.39 1.61
logl0() 0.00 0.30 0.48 0.60 0.70
pow(2,x) 2.00 4.00 8.00 16.00 32.00
function -1.50 -0.40 0.70 1.80 2.90
fabs () 1.50 0.40 0.70 1.80 2.90
ceil() -1.00 0.00 1.00 2.00 3.00
floor () -2.00 -1.00 0.00 1.00 2.00
sin() -1.00 -0.39 0.64 0.97 0.24
cos () 0.07 0.92 0.76 -0.23 -0.97
tan() -14.10 -0.42 0.84 -4.29 -0.25

3.53 Find the error in each of the following program segments and explain how to correct it:
a) float cube(float); // function prototype

double cube(float number) // function definition
{
return number * number * number;

}
ANS: The function definition defaults to a return type of int. Specify a return type of £loat for the definition.
b) register auto int x = 7;
ANS: Only one storage class specifier can be used. Either registeror auto must be removed.
¢) int randomNumber = srand();
ANS: Function srand takes anunsigned argument and does not return a value. Use rand instead of srand.
d) float y = 123.45678;

int x;

X =y;
cout << static_cast< float >(x) << endl;
ANS: The assignment of ¥ to x truncates decimal places.
e) double square(double number)
{
double number;
return number * number;
}
ANS: Variable number is declared twice. Remove the declaration within the {}.
f) int sum(int n)

{
if (n == 10)
return 0;
else
return n + sum(n);
}

ANS: Infinite recursion. Change operator + to operator -.

3.54 Modify the craps program of Fig. 3.10 to allow wagering. Package as a function the portion of the program that runs one
game of craps. Initialize variablebankBalance to 1000 dollars. Prompt the player to enter awager. Use awhile loop to check
that wager is less than or equal to bankBalance and, if not, prompt the user to reenter wager until a valid wager is entered.
After a correct wager is entered, run one game of craps. If the player wins, increase bankBalance by wager and print the new
bankBalance. If the player loses, decrease bankBalance by wager, print the newbankBalance, check on whether bank -

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

114 Functions Solutions Chapter 3

Balance has become zero and, if so, print the message "Sorry. You busted!" As the game progresses, print various mes-
sages to create some “chatter” such as "Oh, you're going for broke, huh?" or "Aw cmon, take a chance!", or
"You'reup big. Now's the time tocash inyourchips!".

1 // Exercise 3.54 Solution
2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 #include <cstdlib>

9 $#include <ctime>

10

11 enum Status { WON, LOST, CONTINUE };
12

13 int rollDice(void);
14 int craps(void);
15 void chatter(void);

16

17 int main()

18 ¢

19 int result, wager = 0, bankBalance = 1000;

20 char playAgain;

21

22 srand(time(0));

23

24 do {

25 cout << "You have $" << bankBalance

26 << " in the bank.\nPlace your wager: ";
27 cin >> wager;

28

29 while (wager <= 0 || wager > bankBalance) {
30 cout << "Please bet a valid amount.\n";

31 cin >> wager;

32 }

33

34 result = craps();

35

36 if (result == LOST) {

37 bankBalance -= wager;

38 cout << "Your new bank balance is $" << bankBalance << "\n";
39

40 if (bankBalance == 0) {

41 cout << "Sorry. You Busted! Thank You For Playing.\n";
42 break;

43 }

44 }

45 else {

46 bankBalance += wager;

47 cout << "Your new bank balance is $" << bankBalance << "\n";
48 }

49

50 cout << "Would you like to try your luck again (y/n)? ";
51 cin >> playAgain;

52 } while (playAgain == 'y' || playAgain == 'Y');
53

54 cout << endl;

55

56 return 0;

57 3}

58

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Functions Solutions 115

Chapter 3

59 int rollDice(void)

60 {

61 int diel, die2, workSum;

62

63 diel = 1 + rand() % 6;

64 die2 = 1 + rand() % 6;

65 workSum = diel + die2;

66 cout << "Player rolled " << diel << " + " << die2 << " = n
67 << workSum << '\n';

68

69 return workSum;

70

71

72 int craps(void)

73 {

74 int gameStatus, sum, myPoint;
75

76 sum = rollDice();

77

78 switch (sum) {

79 case 7: case 1l:

80 gameStatus = WON;

81 chatter();

82 break;

83 case 2: case 3: case 12:
84 gameStatus = LOST;

85 chatter();

86 break;

87 default:

88 gameStatus = CONTINUE;
89 myPoint = sum;

90 cout << "Point is " << myPoint << '\n';
91 chatter();

92 break;

93 }

94

95 while (gameStatus == CONTINUE) {
96 chatter();

97 sum = rollDice();

98

99 if (sum == myPoint)

100 gameStatus = WON;

101 else if (sum == 7)

102 gameStatus = LOST;

103

104

105 if (gameStatus == WON) {
106 cout << "Player wins\n";
107 return WON;

108 }

109 else {

110 cout << "Player loses\n";
111 return LOST;

112 }

113 3

114

115 void chatter(void)

116 ¢

117 switch (1 + rand() % 9) {
118 case 1:

119 cout << "Oh, you're going for broke, huh?";
120 break;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

116 Functions Solutions Chapter 3

121 case 2:

122 cout << "Aw cmon, take a chance!";

123 break;

124 case 3:

125 cout << "Hey, I think this guy is going to break the bank!!";
126 break;

127 case 4:

128 cout << "You're up big. Now's the time to cash in your chips!";
129 break;

130 case 5:

131 cout << "Way too lucky! Those dice have to be loaded!";
132 break;

133 case 6:

134 cout << "Bet it all! Bet it all!";

135 break;

136 case 7:

137 cout << "Can I borrow a chip?";

138 break;

139 case 8:

140 cout << "Let's try our luck at another table.";

141 break;

142 case 9:

143 cout << "You're a cheat! It is just a matter of time"
144 << "\nbefore I catch you!!!";

145 break;

146 }

147

148 cout << endl;

149 3

You have $1000 in the bank.

Place your wager: 1000

Player rolled 5 + 4 = 9

Point is 9

Way too lucky! Those dice have to be loaded!

You're up big. Now's the time to cash in your chips!
Player rolled 5 + 4 = 9

Player wins

Your new bank balance is $2000

Would you like to try your luck again (y/n)? n

3.55 Write a C++ program that uses an inline function circleArea to prompt the user for the radius of a circle and to cal-
culate and print the area of that circle.

// Exercise 3.55 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

double pi = 3.14159; // global variable

NV OONOOTRARWN—

10 inline double circleArea(double r) { return pi * r * r; }

12 int main()
13
14 double radius;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 117

16
17
18
19
20
21

cout << "Enter the radius of the circle: ";
cin >> radius;
cout << "The area of the circle is " << circleArea(radius) << endl;

return 0;

Enter the radius of the circle: 10
The area of the circle is 314.159

3.56 Write a complete C++ program with the two alternate functions specified below, of which each simply triples the variable
count defined in main. Then compare and contrast the two approaches. These two functions are

a) Function tripleCallByValuethat passes a copy of count call-by-value, triples the copy and returns the new val-
ue.
b) Function tripleByReference that passes count with true call-by-reference via a reference parameter and triples
the original copy of count through its alias (i.e., the reference parameter).

1 // Exercise 3.56 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int tripleCallByValue(int);

9 wvoid tripleByReference(int &);

10

11 int main()

12 ¢

13 int value, &valueRef = value;

14

15 cout << "Enter an integer: ";

16 cin >> value;

17

18 cout << "\nValue before call to tripleCallByValue() is: "

19 << value << "\nValue returned from tripleCallByValue() is: "
20 << tripleCallByValue(value)

21 << "\nValue (in main) after tripleCallByValue() is: " << value
22 << "\n\nValue before call to tripleByReference() is: "

23 << value << '\n';

24

25 tripleByReference(valueRef);

26

27 cout << "Value (in main) after call to tripleByReference() is: "
28 << value << endl;

29

30 return 0;
31 1}
32

33 int tripleCallByValue(int valueCopy)
34 {
35 return valueCopy *= 3;

36 1}
37
38 wvoid tripleByReference(int &aliasRef)

39 {
40 aliasRef *= 3;
41 }

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

118 Functions Solutions Chapter 3

Enter

Value
Value
Value

Value
Value

an integer: 8

before call to tripleCallByValue() is: 8
returned from tripleCallByValue() is: 24
(in main) after tripleCallByValue() is: 8

before call to tripleByReference() is: 8
(in main) after call to tripleByReference() is: 24

3.57 What is the purpose of the unary scope resolution operator?
ANS: The unary scope resolution operator is used to access a global variable. In particular, the unary scope resolution oper-
ator is useful when a global variable needs to be accessed and a local varible has the same name.

3.58 Write a program that uses a function template calledmin to determine the smaller of two arguments. Test the program using
integer, character and floating-point number pairs.

1 // Exercise 3.58 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 template < class T >

8 wvoid min(T valuel, T value2) // £ind the smallest value
9 {

10 if (valuel > value2)

11 cout << value2 << " is smaller than " << valuel;
12 else

13 cout << valuel << " is smaller than " << value2;
14

15 cout << endl;

16 1}

17

18 int main()

19 {

20 min(7, 54); // integers

21 min(4.35, 8.46); // doubles

22 min('g', 'T'); // characters

23

24 return 0;

25)

7 is smaller than 54
4.35 is smaller than 8.46
T is smaller than g

3.59 Write a program that uses a function template called max to determine the largest of three arguments. Test the program
using integer, character and floating-point number pairs.

ONOCOTAWN —

// Exercise 3.59 Solution
#include <iostream>

using std::cout;
using std::endl;

template < class T >
void max(T valuel, T value2, T value3) // £find the largest value

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 3 Functions Solutions 119

7 {

10 if (valuel > value2 && valuel > value3)

11 cout << valuel << " is greater than " << value2
12 << " and " << value3;

13 else if (value2 > valuel && value2 > value3)

14 cout << value2 << " is greater than " << valuel
15 << " and " << value3;

16 else

17 cout << value3 << " is greater than " << valuel
18 << " and " << value2;

19

20 cout << endl;

21

22

23

24 int main()

25 {

26 max(7, 5, 2); // integers

27 max(9.35, 8.461, 94.3); // doubles

28 max('!', 'T', '$'); // characters

29

30 return 0;

31

7 is greater than 5 and 2
94.3 is greater than 9.35 and 8.461
T is greater than ! and $

3.60 Determine whether the following program segments contain errors. For each error, explain how it can be corrected. Note:
For a particular program segment, it is possible that no errors are present in the segment.

a) template < class A >
int sum(int numl, int num2, int num3)
{
return numl + num2 + num3;
}
ANS: The function return type and parameter types should be A.
b) void printResults(int x, int y)
{
cout << "The sum is " << X + y << '\n';
return x + y;
}
ANS: The function specifies avoid return type and attempts to return a value. Two possible solutions: (1) change void
to int. or (2) remove the line return x + y;.
c) template < A >
A product(A numl, A num2, A num3)
{
return numl * num2 * num3;
}
ANS: Keyword class is needed in the template declaration template <class A>.
d) double cube(int);
int cube(int);
ANS: The signatures are not different. Overloaded functions must have different signatures meaning that the name and
parameter list must be different. If only the returns types differ, the compiler generates an error message.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Arrays
Solutions

Solutions

4.6 Fill in the blanks in each of the following:
a) C++ stores lists of values in
ANS: arrays.
b) The elements of an array are related by the fact that they
ANS: have the same name and type.
¢) When referring to an array element, the position number contained within square brackets is called a
ANS: subscript.

d) The names of the four elements of array p are s s and
ANS: p[0 1,pl 1 1,p[2 1,p[31
e) Naming an array, stating its type and specifying the number of elements in the array is called the array.

ANS: declaring.
f) The process of placing the elements of an array into either ascending or descending order is called
ANS: sorting.
g) In a double-subscripted array, the first subscript (by convention) identifies the
of an element, and the second subscript (by convention) identifies the
of an element.
ANS: row, column.
h) Anm-by-n array contains TOWS, columns and elements.
ANS: m,n, mxn.
i) The name of the element in row 3 and column 5 of array d is
ANS: d[2 1[4 1.

4.7 State which of the following are true and which are false; for those that are false, explain why they are false.
a) To refer to a particular location or element within an array, we specify the name of the array and the value of the par-
ticular element.
ANS: False. The name of the array and the subscript of the array are specified.
b) An array declaration reserves space for the array.
ANS: True.
¢) To indicate that 100 locations should be reserved for integer array p, the programmer writes the declaration

p[100];

ANS: False. A data type must be specified. An example of a correct definition would be: unsigned p[100 1;.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 121

4.8

4.9

d) A C++ program that initializes the elements of a 15-element array to zero must contain at least one £or statement.
ANS: False. The array can be initialized in a declaration with a member initializer list.

e) A C++ program that totals the elements of a double-subscripted array must contain nested for statements.

ANS: False. The sum of the elements can be obtained without £or loops, with one £or loop, three for loops, etc.

Write C++ statements to accomplish each of the following:
a) Display the value of the seventh element of character array £.
ANS: cout << f[6 1 << '\n’;
b) Input a value into element 4 of single-subscripted floating-point array b.
ANS: cin >> b[4 1;
c) Initialize each of the 5 elements of single-subscripted integer array g to 8.
ANS:
int g[51 =4{8, 8, 8, 8, 8 };
or
for (int j = 0; j < 5; ++3j)
gl 31-=28;
d) Total and print the elements of floating-point array ¢ of 100 elements.
ANS:
for (int k = 0; k < 5; ++k) {
total += ¢c[k]1; // assume total declared and initalized
cout << c[k] << '\n’
}
e) Copy array a into the first portion of array b. Assume double a[11 1, b[34 1;
ANS:
for (int i = 0; i < 11; ++i)
bl il =alil;
f) Determine and print the smallest and largest values contained in 99-element floating-point array w.
ANS:
// assume all variables declared and initialized
for (int j = 0; j < 99; ++j)
if (w[j] < smallest)
smallest = w[j 1;
else if (w[j 1 > largest)
largest = w[j 1;

Consider a 2-by-3 integer array t.

a) Write a declaration for t.

ANS: int t[2 1[3 1;

b) How many rows does t have?

ANS: 2

¢) How many columns does t have?

ANS: 3

d) How many elements does t have?

ANS: 6

e) Write the names of all the elements in the second row of t.

ANS: £t[1 1[0 0 1,£[l 1 1L 1 1,t[1 1[21

f) Write the names of all the elements in the third column of t.

ANS: t[0 1[2 1,£[1 1[2 1]

g) Write a single statement that sets the element of t in row 1 and column 2 to zero.

ANS: t[0 I[L 1] = 0;

h) Write a series of statements that initialize each element of t to zero. Do not use a repetition structure.

ANS:
tl
tl
tl
tl
tl
tl

1
1[
10

PR RBOOO

——

— - -

MNHE ONKEO

— e e
nonono
ocooo

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

122

Arrays Solutions Chapter 4

i) Write a nested £or structure that initializes each element of t to zero.
ANS:
for (int i = 0; i
for (int j = 0; 3
tE[ill31=0;
j) Write a statement that inputs the values for the elements of t from the terminal.
ANS:
for (int r = 0; r < 2;
for (int ¢ = 0; c < 3; ++c)
tlrllcl]l =20;
k) Write a series of statements that determine and print the smallest value in array t.
ANS:
int smallest = t[0 1[0 1;
for (int r = 1; r < 2; ++r)
for (int c 1l; ¢ < 3; ++c)
if (t[r 1[¢ 1 < smallest)
smallest = t[r 1[¢ 1;
cout << smallest;
1) Write a statement that displays the elements of the first row of t
ANS: cout << t[0 J[0] << 7 7 << €[0][1] <<’ 7" << t[0 1[21 << "\n’;
m) Write a statement that totals the elements of the fourth column of t.
ANS: t does not contain a fourth column.
n) Write a series of statements that prints the array t in neat, tabular format. List the column subscripts as headings across
the top and list the row subscripts at the left of each row.
ANS:
cout << " 0 1 2\n";
for (int r = 0; r < 2; ++r) {
cout << r << ' /;

N~

for (int ¢ = 0; c < 3; ++c)
cout << t[r lJ[c] << " ";

cout << ’\n’;

}

4.10 Use a single-subscripted array to solve the following problem. A company pays its salespeople on a commission basis. The
salespeople receive $200 per week plus 9 percent of their gross sales for that week. For example, a salesperson who grosses $5000
in sales in a week receives $200 plus 9 percent of $5000, or a total of $650. Write a program (using an array of counters) that de-
termines how many of the salespeople earned salaries in each of the following ranges (assume that each salesperson’s salary is trun-
cated to an integer amount):

a) $200-$299
b) $300-$399
c) $400-$499
d) $500-$599
e) $600-$699
f) $700-$799
g) $800-$899
h) $900-$999
i) $1000 and over

ONOCOBAWN —

// Exercise 4.10 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;
using std::ios;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 123

9 #include <iomanip>

11 using std::setprecision;
12 using std::setiosflags;

14 void wages(int []);
15 wvoid display(const int []);

16

17 4int main()

18 {

19 int salaries[11] = { 0 };

20

21 cout << setiosflags(ios::fixed | ios::showpoint);
22 wages (salaries);

23 display(salaries);

24

25 return 0;

26 1}

27

28 wvoid wages(int moneyI[])

29 {

30 double sales, i = 0.09;

31

32 cout << "Enter employee gross sales (-1 to end): ";
33 cin >> sales;

34

35 while (sales != -1) {

36 double salary = 200.0 + sales * i;

37 cout << setprecision(2) << "Employee Commission is &"
38 << salary << '\n';

39

40 int x = static_cast< int > (salary) / 100;

41 ++money[(x < 10 ? x : 10) 1;

42

43 cout << "\nEnter employee gross sales (-1 to end): ";
44 cin >> sales;

45 }

46)

47

48 void display(const int dollars[])

49 {

50 cout << "Employees in the range:";

51 for (int i = 2; i < 10; ++i)

52 cout << "\n$" << i << "00-%" << i << "99 : " << dollarsl[i];
53

54 cout << "\nOver $1000: " << dollars[10] << endl;
55 3}

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

124 Arrays Solutions

Enter employee gross sales (-1 to end): 10000
Employee Commission is $1100.00

Enter employee gross sales (-1 to end): 4235
Employee Commission is $581.15

Enter employee gross sales (-1 to end): 600
Employee Commission is $254.00

Enter employee gross sales (-1 to end): 12500
Employee Commission is $1325.00

Enter employee gross sales (-1 to end): -1
Employees in the range:

$200-$299
$300-$399
$400-5499
$500-$599
$600-$699
$700-$799
$800-5899
$900-$999
Over $1000:

1
0
0
1
0
0
0
0
2

Chapter 4

4.11 The bubble sort presented in Fig. 4.16 is inefficient for large arrays. Make the following simple modifications to improve

the performance of the bubble sort:

a) After the first pass, the largest number is guaranteed to be in the highest-numbered element of the array; after the second
pass, the two highest numbers are “in place,” and so on. Instead of making nine comparisons on every pass, modify the

bubble sort to make eight comparisons on the second pass, seven on the third pass, and so on.

b) The data in the array may already be in the proper order or near-proper order, so why make nine passes if fewer will
suffice? Modify the sort to check at the end of each pass if any swaps have been made. If none have been made, then
the data must already be in the proper order, so the program should terminate. If swaps have been made, then at least

one more pass is needed.

// Exercise 4.11 Part A Solution
#include <iostream>

using std::cout;
using std::endl;

#include <iomanip>
using std::setw;

int main()

OB WN—=0OVONOCORARWN —

{
const int SIZE = 10;
int a[SI1ZE] = { 2, 6, 4, 8, 10, 12, 89, 68, 45,
int hold, numberOfComp = 0, comp;
16
17 cout << "Data items in original order\n";
18 for (int i = 0; i < SIZE; ++i)
19 cout << setw(4) << a[i 1;
20
21 cout << "\n\n";
22
23 for (int pass = 1; pass < SIZE; ++pass) {
24 cout << "After pass " << pass - 1 << ": ";
25

37 };

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4

Arrays Solutions 125

Data items

2

After
After
After
After
After
After
After
After
After

Data items

2

for (comp = 0;
++numberOfComp;

comp < SIZE

- pass; ++comp) {

if (a[l comp] > a[comp + 1]) {

hold =

al comp] =

al comp + 1]
}

al[comp];
al comp + 1]1;

= hold;

cout << setw(3) << a[comp 1;

}

cout << setw(3) << a[comp] <<

}

l\nl;

cout << "\nData items in ascending order\n";

for (int j = 0;

j < SIZE;

++3)

cout << setw(4) << al[j 1;

cout << "\nNumber of comparisons = " << numberOfComp << endl;

return 0;

in original order

6 4 8 10 12 89
pass O0: 2 4 6 8 10
pass 1: 2 4 6 8 10
pass 2: 2 4 6 8 10
pass 3: 2 4 6 8 10
pass 4: 2 4 6 8 10
pass 5: 2 4 6 8 10
pass 6: 2 4 6 8
pass 7: 2 4 6
pass 8: 2 4

in ascending order
4 6 8 10 12 37

Number of comparisons = 45

68

12
12
12
12
12

45

45 37

68 45 37 89
45 37 68

37 45

37

68 89

// print last array value

—ONVONOCOEAE WN—

12

using std::cout;
using std::endl;

#include <iomanip>
using std::setw;

int main()

const int SIZE =
int a[SIZE] =
int hold, numberOfComp
bool swapCheck = true;

10;

cout << "Data items in

{6, 4,

2,
=0,

// Exercise 4.11 Part B Solution
#include <iostream>

8, 10,
comp;

12, 37, 45, 68,

original order\n";

89 1}

I

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

126 Arrays Solutions Chapter 4
19 for (int i = 0; i < SIZE; ++i)

20 cout << setw(4) << a[1 1;

21

22 cout << "\n\n";

23

24 for (int pass = 1; pass < SIZE - 1 && swapCheck == true; ++pass) {
25 cout << "After pass " << pass - 1 << ": ";

26 swapCheck = false; // assume no swaps will be made

27

28 for (comp = 0; comp < SIZE - pass; ++comp) {

29 ++numberOfComp;

30

31 if (a[comp] > a[comp + 1 1) {

32 hold = a[comp];

33 al comp] = a[comp + 1];

34 a[comp + 1] = hold;

35 swapCheck = true; // a swap has been made

36 }

37

38 cout << setw(3) << a[comp 1;

39 }

40

41 cout << setw(3) << a[comp] << '\n'; // print last array value
42 }

43

44 cout << "\nData items in ascending order\n";

45

46 for (int @ = 0; g < SIZE; ++q)

47 cout << setw(4) << a[q 1;

48

49 cout << "\nNumber of comparisons = " << numberOfComp << endl;
50

51 return 0;

52 3

Data items in original order

6 4 2 8 10 12 37 45 68 89
After pass 0: 4 2 6 8 10 12 37 45 68 89
After pass 1: 2 4 6 8 10 12 37 45 68
After pass 2: 2 4 6 8 10 12 37 45
Data items in ascending order

2 4 6 8 10 12 37 45 68 89
Number of comparisons = 24

4.12 Write single statements that perform the following single-subscripted array operations:
a) Initialize the 10 elements of integer array counts to zero.
ANS: int counts[10] = { 0 };
b) Add 1 to each of the 15 elements of integer array bonus.
ANS:
for (int i = 0;
++bonus[1 1;
¢) Read 12 values for double array monthlyTemperatures from the keyboard.
ANS:
for (int p = 0; p < 12; ++p)
cin >> monthlyTemperatures[p 1;
d) Print the 5 values of integer array best Scores in column format.

i < 15; ++i)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 127

ANS:
for (int u = 0; u < 5; ++u)
cout << bestScores[u] << ’\t’;

4.13 Find the error(s) in each of the following statements:
a) Assume that: char str[5 1;
cin >> str; // User types hello
ANS: Inadequate length. The string input exceeds the valid subscript range.
b) Assume that: int a[3];
cout << a[1] << " " << a[2] << " " << a[3] << endl;
ANS: a[3]isnota valid location in the array. a[2 1] is the last valid location.
c¢) double £[3 1] = { 1.1, 10.01, 100.001, 1000.0001 };
ANS: Too many initializers in the initializer list. Only 1, 2, or 3 values may be provided in the initializer list.
d) Assume that: double 4[2][10];
dal 1, 9 1 = 2.345;
ANS: Incorrect syntax array element access. d[1 1[9 1 is the correct syntax.

4.14 Modify the program of Fig. 4.17 so function mode is capable of handling a tie for the mode value. Also modify function
median so the two middle elements are averaged in an array with an even number of elements.

// Exercise 4.14 Solution
#include <iostream>

using std::cout;
using std::endl;

using std::ios;

#include <iomanip>

NV OONOGBAWN—

10 using std::setw;
11 using std::setprecision;
12 using std::setiosflags;

14 void mean(int []1, int);
15 void median(int [], int);
16 wvoid mode(int [], int []1, int, int);

17

18 int main()

19 {

20 const int SIZE = 100, MAXFREQUENCY = 10;

21 int response[SIZE] = { 6, 7, 8, 9, 8, 7, 8, 9, 8, 9,
22 7, 8 9, 5, 9, 8, 7, 8, 7, 1,
23 6, 7, 8, 9, 3, 9, 8, 7, 1, 7,
24 7, 8 9, 8, 9, 8, 9, 7, 1, 9,
25 6, 7, 8, 7, 8, 7, 9, 8, 9, 2,
26 7, 8, 9, 8, 9, 8, 9, 7, 5, 3,
27 5, 6, 7, 2, 5, 3, 9, 4, 6, 4,
28 7, 8, 9, 6, 8, 7, 8, 9, 7, 1,
29 7, 4, 4, 2, 5, 3, 8, 7, 5, 6,
30 4, 5, 6, 1, 6, 5, 7, 8, 7, 9 };
31 int frequency[MAXFREQUENCY] = { 0 };

32

33 mean(response, SIZE);

34 median(response, SIZE);

35 mode (frequency, response, SIZE, MAXFREQUENCY):;

36

37 return 0;

38 1}

39

40 void mean(int answer[], int size) // mean

41 {

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

128 Arrays Solutions Chapter 4

42 int total = 0;

43

44 cout << ||******\nMean\n******\nn;

45

46 for (int j = 0; j < size; ++3j)

47 total += answer[j 1;

48

49 cout << setiosflags(ios::fixed | ios::showpoint)

50 << "The mean is the average value of the data items.\n"
51 << "The mean is equal to the total of all the data\n"
52 << "items divided by the number of data items (" << size << ").n"
53 << "\nThe mean value for this run is: " << total

54 << " / " << size << " = " << setprecision(2)

55 << static_cast< double > (total) / size << "\n\n";

56 1}

57

58 +void median(int answer[], int size) // median
59 {

60 int hold;

61 bool firstRow = true;

62

63 cout << "\n******\nMedian\n******\nn

64 << "The unsorted array of responses is\n";

65

66 for (int loop = 0; loop < size; loop++) {

67 if (loop % 20 == 0 && !firstRow)

68 cout << '\n';

69

70 cout << setw(2) << answer[loop 1;

71 firstRow = false;

72 }

73

74 cout << "\n\n";

75

76 for (int pass = 0; pass <= size - 2; ++pass)

77 for (int k = 0; k <= size - 2; ++k)

78 if (answer[k] > answer[k + 1 1) {

79 hold = answer[k];

80 answer[k] = answer[k + 1 1;

81 answer[k + 1] = hold;

82 }

83

84 cout << "The sorted array is\n";

85

86 firstRow = true;

87 for (int j = 0; j < size; ++j) {

88 if (jJ % 20 == 0 && !'firstRow)

89 cout << '"\n';

90

91 cout << setw(2) << answer[j 1;

92 firstRow = false;

93 }

94

95 cout << "\n\n";

96

97 if (size % 2 == 0) // even number of elements

98 cout << "The median is the average of elements " << (size + 1) / 2
99 << " and " << 1 + (size + 1) / 2 << " of the sorted "
100 << size << " element array.\nFor this run the median is "
101 << setprecision(1)

102 << static_cast< double >(answer[(size + 1) / 2] +
103 answer[(size + 1) /7 2 + 11) / 2

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions

129

104
105
106
107

109

110 3}
111

<< " \n\nll ;
else // odd number of elements
cout << "The median is element " << (size + 1) / 2 << " of "
<< "the sorted " << size << " element array.\n"
<< "For this run the median is " << answer[(size + 1) / 2 - 1 1]
<< "\n\n";

112 void mode(int freq[], int answer[], int aSize, int fSize)

113 {
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

154
155
156
157
158
159 3

const int SIZE2 = 10;
int largest = 0, array[SIZE2] = { 0 }, count = 0;

cout << "\n******\nMode\n******\pn";

for (int rating = 1; rating < fSize; ++rating)
freq[rating] = 0;

for (int loop = 0; loop < aSize; ++loop)
++freq[answer[loop] 1;

cout << setw(13) << "Response" << setw(11) << "Frequency" << setw(19)

<< "Histogram\n\n" << setw(55) << "1 1 2 2\n"
<< setw(56) << "5 0 5 0 5\n\n";
for (int r = 1; r < fSize; ++r) {
cout << setw(8) << rating << setw(11) << fregq[r] << " Dg

if (freq[r 1 > largest) {
largest = freq[r 1;

for (int v = 0; v < SIZE2; ++V)
arrayl[v 1 = 0;
array[r] = largest;
++count;
}
else if (freqg[r] == largest) {
array[r] = largest;
++count;
}

for (int b = 1; b <= freq[r 1; b++)
cout << '*';

cout << '\n';

}
cout << (count > 1 ? "\nThe modes are: " : "\nThe mode is: ");
for (int m = 1; m < SIZE2; ++m)

if (array[m] != 0)

cout << m << " with a frequency of " << array[m] << "\n\t\t";

cout << endl;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

130 Arrays Solutions Chapter 4

kkkkkk

Mean

*kkkkk

The mean is the average value of the data items.
The mean is equal to the total of all the data
items divided by the number of data items (100).
The mean value for this run is: 662 / 100 = 6.62

kkkkkk

Median

*kkkkk

The unsorted array of responses is

67 8987 898978950987871
67 8939871778989 897129
67 87 87 9892789898975 3
56 7253946478968 78971
7 44253875645616578729
The sorted array is
111112223333 4444455°5
5555566666 666677777717717
77 77 7777777777777 8 88
8 8 8 8888888888888 8888
9 99999999999999999 99

The median is the average of elements 50 and 51 of the sorted 100 element array.

For this run the median is 7.0

*kkkkk
Mode
kkkkkk
Response Frequency Histogram
1 1 2 2
5 0 5 0 5
10 5 *kkk*k
10 3 LS
10 4 *kkk
10 5 *kkk*k
10 8 kkkkkkkk
10 9 *hkkkkkkkk
10 23 khkkkhkkkhkkkhkkkhkkkkkkkkkk
10 23 khkkkhkkkhkkkhkkkhkkkkkkkkkk
10 20 khkkhkhkkkhkkhkhkhkkkhkkkk*

The modes are: 7 with a frequency of 23
8 with a frequency of 23

4.15 Use a single-subscripted array to solve the following problem. Read in 20 numbers, each of which is between 10 and 100,
inclusive. As each number is read, print it only if it is not a duplicate of a number already read. Provide for the “worst case” in which
all 20 numbers are different. Use the smallest possible array to solve this problem.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 131

// Exercise 4.15 Solution
#include <iostream>

using std::cout;
using std::endl;

using std::cin;

#include <iomanip>

NV OONOGBAWN—

10 using std::setw;

12 int main()

13 {

14 const int SIZE = 20;

15 int a[SIZE] = { 0 }, subscript = 0, duplicate, value;
16

17 cout << "Enter 20 integers between 10 and 100:\n";
18

19 for (int i1 = 0; i < SIZE; ++i) {(

20 duplicate = 0;

21 cin >> value;

22

23 for (int j = 0; j < subscript; ++3j)

24 if (value == a[7 1) {

25 duplicate = 1;

26 break;

27 }

28

29 if (!duplicate)

30 a[subscript++] = value;

31 }

32

33 cout << "\nThe nonduplicate values are:\n";
34

35 for (i =0; a[l 1 1 !'= 0; ++i)

36 cout << setw(4) << al[i 1;

37

38 cout << endl;

39

40 return 0;

41 1}

Enter 20 integers between 10 and 100:
22 56 78 94 22 94 38 10 11 12 22 12 13 14 15 16 17 88 88 77

The nonduplicate values are:
22 56 78 94 38 10 11 12 13 14 15 16 17 88 717

4.16 Label the elements of 3-by-5 double-subscripted array sales to indicate the order in which they are set to zero by the
following program segment:

for (row = 0; row < 3; row++)

for (column = 0; column < 5; column++)
sales[row][column] = 0;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

132 Arrays Solutions Chapter 4

ANS:

sales[0][0 1, sales[O][1 1, sales[O0 1[2 1, sales[O 1[3 1,
sales[0][4 1, sales[1][0], sales[1][1], sales[1][2],
sales[1][3], sales[1]1[4], sales[2][0], sales[2][1]
sales[2][2], sales[2][3 1, sales[2][4]

4

4.17 Write a program that simulates the rolling of two dice. The program should use rand to roll the first die and should use
rand again to roll the second die. The sum of the two values should then be calculated. Note: Since each die can show an integer
value from 1 to 6, then the sum of the two values will vary from 2 to 12, with 7 being the most frequent sum and 2 and 12 being the
least frequent sums. Figure 4.24 shows the 36 possible combinations of the two dice. Your program should roll the two dice 36,000
times. Use a single-subscripted array to tally the numbers of times each possible sum appears. Print the results in a tabular format.
Also, determine if the totals are reasonable (i.e., there are six ways to roll a 7, so approximately one sixth of all the rolls should be 7).

1 2 3 4 5 6

1121345167
2134|5678
314567189
4567189110
51678 9([10]11
61718 9110[11]12
Fig. 4.24 The 36 possible outcomes of rolling two dice.
1 // Exercise 4.17 Solution
2 #include <iostream>
3
4 using std::cout;
5 using std::ios;
6
7 #include <iomanip>
8
9 using std::setw;
10 using std::setprecision;
11 using std::setiosflags;
12
13 #include <cstdlib>
14 #include <ctime>
15
16 int main()
17 {
18 const long ROLLS = 36000;
19 const int SIZE = 13;
20 // array exepected contains counts for the expected
21 // number of times each sum occurs in 36 rolls of the dice
22 int expected[SIZE] = { 0, O, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1 };
23 int x, y, sum[SIZE] = { 0 };
24
25 srand(time(0));
26
27 for (long i = 1; i <= ROLLS; ++i) {
28 X =1+ rand() % 6;
29 y =1 + rand() % 6;
30 ++sum[x + y 1;
31 }
32
33 cout << setw(10) << "Sum" << setw(10) << "Total" << setw(10)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 133
34 << "Expected" << setw(10) << "Actual\n"
35 << setiosflags(ios::fixed | ios::showpoint);
36
37 for (int j = 2; j < SIZE; ++j)
38 cout << setw(10) << j << setw(10) << sum[j] << setprecision(3)
39 << setw(9) << 100.0 * expected[j] / 36 << "%" << setprecision(3)
40 << setw(9) << 100.0 * sum[j 1 / 36000 << "%\n";
41
42 return 0;
43 3
Sum Total Expected Actual
2 996 2.778% 2.767%
3 2015 5.556% 5.597%
4 3005 8.333% 8.347%
5 3965 11.111% 11.014%
6 5003 13.889% 13.897%
7 5985 16.667% 16.625%
8 5000 13.889% 13.889%
9 4035 11.111% 11.208%
10 3042 8.333% 8.450%
11 1947 5.556% 5.408%
12 1007 2.778% 2.797%

4.18 What does the following program do?

1 // ex04_18.cpp

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 int whatIsThis(int [], int);

8

9 int main()

10 ¢

11 const int arraySize = 10;

12 int a[arraysSize 1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
13

14 int result = whatIsThis(a, arraySize);
15

16 cout << "Result is " << result << endl;
17 return 0;

18 1}

19

20 int whatIsThis(int b[], int size)

21 {

22 if (size == 1)

23 return b[0];

24 else

25 return b[size - 1] + whatIsThis(b, size - 1);
26)

Result is 55

4.19 Write a program that runs 1000 games of craps and answers the following questions:
a) How many games are won on the 1°' roll, 2" roll, ..., 201 roll, and after the 20" roll?

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

134 Arrays Solutions

b) How many games are lost on the 1°roll, 2™ roll, ..., 20" roll, and after the 20? roll?

Chapter 4

c¢) What are the chances of winning at craps? (Note: You should discover that craps is one of the fairest casino games.

What do you suppose this means?)
d) What is the average length of a game of craps?

e) Do the chances of winning improve with the length of the game?

// Exercise 4.19 Solution
#include <iostream>

using std::cout;
using std::endl;

using std::ios;

#include <iomanip>

NVOONOGTA WN —

10 using std::setw;
11 using std::setprecision;
12 using std::setiosflags;

14 #$#include <cstdlib>
15 #include <ctime>

16

17 4int rollDice(wvoid);

18

19 int main()

20 ¢

21 enum Outcome { CONTINUE, WIN, LOSE };
22 const int SIZE = 22, ROLLS = 1000;
23 int gameStatus, sum, myPoint, roll, length
24 losses[SIZE] = { 0 }, winSum = O,
25

26 srand(time(0));

27

28 for (int i = 1; i <= ROLLS; ++i) {
29 sum = rollDice();

30 roll = 1;

31

32 switch (sum) {

33 case 7: case 1l:

34 gameStatus = WIN;

35 break;

36 case 2: case 3: case 12:

37 gameStatus = LOSE;

38 break;

39 default:

40 gameStatus = CONTINUE;

41 myPoint = sum;

42 break;

43 }

44

45 while (gameStatus == CONTINUE) {
46 sum = rollDice();

47 ++roll;

48

49 if (sum == myPoint)

50 gameStatus = WIN;

51 else if (sum == 7)

52 gameStatus = LOSE;

53 }

54

55 if (roll > 21)

wins[SIZE]

0;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4

Arrays Solutions

135

56 roll = 21;

57

58 if (gameStatus == WIN) {

59 ++wins[roll];

60 ++winSum;

61 }

62 else {

63 ++losses[roll 1;

64 ++loseSum;

65 }

66 }

67

68 cout << "Games won or lost after the 20th roll"

69 << "\nare displayed as the 21st roll.\n\n";

70

71 for (int z = 1; z <= 21; ++z)

72 cout << setw(3) << wins[z] << " games won and " << setw(3)
73 << losses[z] << " games lost on roll " << z << '\n';
74

75 // calculate chances of winning

76 cout << setiosflags(ios::fixed | ios::showpoint)

77 << "\nThe chances of winning are " << winSum << " / "
78 << winSum + loseSum << " = " << setprecision(2)
79 << 100.0 * winSum / (winSum + loseSum) << "%\n";
80

81 // calculate average length of game

82 for (int k = 1; k <= 21; ++k)

83 length += wins[k] * k + losses[k 1 * k;

84

85 cout << "The average game length is " << setprecision(2)
86 << length / 1000.0 << " rolls." << endl;

87

88 return 0;

89

90

91 int rollbice(wvoid)

92 {

93 int diel, die2, workSum;

94

95 diel = 1 + rand() % 6;

96 die2 = 1 + rand() % 6;

97 workSum = diel + die2;

98

99 return workSum;

100 3}

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

136 Arrays Solutions Chapter 4

Games won or lost after the 20th roll
are displayed as the 21st roll.

225 games won and 102 games lost on roll
72 games won and 106 games lost on roll
63 games won and 86 games lost on roll
40 games won and 64 games lost on roll
28 games won and 32 games lost on roll
21 games won and 37 games lost on roll
12 games won and 26 games lost on roll

games won and 11 games lost on roll

oONoOUTkWNR

[
w

9 games won and 8 games lost on roll 9

2 games won and 10 games lost on roll 10
3 games won and 9 games lost on roll 11
2 games won and 6 games lost on roll 12
1l games won and 0 games lost on roll 13
1l games won and 3 games lost on roll 14
2 games won and 0 games lost on roll 15
1l games won and 1l games lost on roll 16
0 games won and 1l games lost on roll 17
1l games won and 0 games lost on roll 18
0 games won and 0 games lost on roll 19
0 games won and 1l games lost on roll 20
1l games won and 0 games lost on roll 21

The chances of winning are 497 / 1000 = 49.70%
The average game length is 3.36 rolls.

4.20 (Airline Reservations System) A small airline has just purchased a computer for its new automated reservations system. You
have been asked to program the new system. You are to write a program to assign seats on each flight of the airline’s only plane
(capacity: 10 seats).

Your program should display the following menu of alternatives— Please type 1 for "First Class" and Please
type 2 for "Economy" . If the person types 1, your program should assign a seat in the first class section (seats 1-5). If the per-
son types 2, your program should assign a seat in the economy section (seats 6-10). Your program should print a boarding pass
indicating the person’s seat number and whether it is in the first class or economy section of the plane.

Use a single-subscripted array to represent the seating chart of the plane. Initialize all the elements of the array to O to indicate
that all seats are empty. As each seat is assigned, set the corresponding elements of the array to 1 to indicate that the seat is no
longer available.

Your program should, of course, never assign a seat that has already been assigned. When the first class section is full, your
program should ask the person if it is acceptable to be placed in the nonsmoking section (and vice versa). If yes, then make the
appropriate seat assignment. If no, then print the message "Next £light leaves in 3 hours."

1 // Exercise 4.20 Solution
2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 #include <cctype>

9

10 int main()

11 {

12 const int SEATS = 11;
13 int plane[SEATS] = { 0 }, people = 0, economy = 1, firstClass = 6,
14 choice;

15 char response;

16

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 137

17 while (people < 10) {

18 cout << "\nPlease type 1 for \"firstClass\"\n"

19 << "Please type 2 for \"economy\"\n";

20 cin >> choice;

21

22 if (choice == 1) {

23 if (!plane[firstClass] && firstClass <= 10) {
24 cout << "Your seat assignment is " << firstClass << ' ';
25 plane[firstClass++] = 1;

26 ++people;

27 }

28 else if (firstClass > 10 && economy <= 5) {

29 cout << "The firstClass section is full.\n"

30 << "Would you like to sit in the economy"
31 << " gection (Y or N)? ";

32 cin >> response;

33

34 if (toupper(response) == 'Y') {

35 cout << "Your seat assignment is " << economy << ' ';
36 plane[economy++] = 1;

37 ++people;

38 }

39 else

40 cout << "Next flight leaves in 3 hours.\n";
41 }

42 else

43 cout << "Next flight leaves in 3 hours.\n";

44 }

45 else {

46 if (!plane[economy] && economy <= 5) {

47 cout << "Your seat assignment is " << economy << '\n';
48 plane[economy++] = 1;

49 ++people;

50 }

51 else if (economy > 5 && firstClass <= 10) {

52 cout << "The economy section is full.\n"

53 << "Would you like to sit in the firstClass"
54 << " section (Y or N)? ";

55 cin >> response;

56

57 if (toupper(response) == 'Y') {

58 cout << "Your seat assignment is " << firstClass << '\n';
59 plane[firstClass++] = 1;

60 ++people;

61 }

62 else

63 cout << "Next flight leaves in 3 hours.\n";
64 }

65 else

66 cout << "Next flight leaves in 3 hours.\n";

67 }

68 }

69

70 cout << "All seats for this flight are sold." << endl;
71

72 return 0;

73 1}

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

138 Arrays Solutions

Please
Please
1

Please
Please
1

type 1 for "firstClass"
type 2 for "economy"

type 1 for "firstClass"
type 2 for "economy"

Your seat assignment is 9

Please
Please
1

type 1 for "firstClass"
type 2 for "economy"

Your seat assignment is 10

Please
Please
2

type 1 for "firstClass"
type 2 for "economy"

Your seat assignment is 5
All seats for this flight are sold.

4.21 What does the following program do?

Chapter 4

//

NVOONOOAWN —

10 ¢

20)

ex04_21.cpp

#include <iostream>

using std::cout;
using std::endl;

void someFunction(int [], int);

int main()

const int arraySize = 10;
int a[arraySize] =

32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

cout << "The values in the array are:" << endl;

someFunction(a, arraySize);
cout << endl;

return 0;

22 void someFunction(int b[], int size)

23 ¢

if (size > 0) {
someFunction(&b[1], size - 1);
cout << b[0] << " »;

The values in the array are:
37 60 70 90 14 95 18 64 27 32

4.22 Use a double-subscripted array to solve the following problem. A company has four salespeople (1 to 4) who sell five dif-
ferent products (1 to 5). Once a day, each salesperson passes in a slip for each different type of product sold. Each slip contains the

following:

a)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

The salesperson number

Chapter 4

Thus, each salesperson passes in between 0 and 5 sales slips per day. Assume that the information from all of the slips for last month
is available. Write a program that will read all this information for last month’s sales and summarize the total sales by salesperson
by product. All totals should be stored in the double-subscripted array sales. After processing all the information for last month,
print the results in tabular format with each of the columns representing a particular salesperson and each of the rows representing
a particular product. Cross total each row to get the total sales of each product for last month; cross total each column to get the total
sales by salesperson for last month. Your tabular printout should include these cross totals to the right of the totaled rows and to the

b) The product number
¢) The total dollar value of that product sold that day

bottom of the totaled columns.

Arrays Solutions 139

NV ONOOTRARWN—

// Exercise 4.22 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;
using std::ios;

#include <iomanip>

using std::setw;
using std::setprecision;
using std::setiosflags;

int main()

{

double sales[PEOPLE][PRODUCTS
productSales[PRODUCTS]
int salesPerson, product;

0.0 }, value, totalsales,

const int PEOPLE = 5, PRODUCTS = 6;
1 ={
{ 0.0 };

cout << "Enter the salesperson (1 - 4), product number (1 - 5), "
<< "and total sales.\nEnter -1 for the salesperson"
<< " to end input.\n";

cin >> salesPerson;

while (salesPerson != -1) {
cin >> product >> value;
sales[salesPerson][product] += value;
cin >> salesPerson;

cout << "\nThe total sales for each salesperson are displayed"
<< " at the end of each row, \n" << "and the total sales for"
<< " each product are displayed at the bottom of each\n"
<< "column.\n " << setw(12) << 1 << setw(12) << 2
<< setw(12) << 3 << setw(12) << 4 << setw(12) << 5 << setw(13
<< "Total\n" << setiosflags(ios::fixed | ios::showpoint);

for (int i = 1; i < PEOPLE; ++i) {
totalsales = 0.0
cout << i;

~

for (int j = 1; j < PRODUCTS; ++j) {
totalSales += sales[i 1[j 1:
cout << setw(12) << setprecision(2) << sales[i 1[J 1:
productSales[j] += sales[i 1[j 1;

}

cout << setw(12) << setprecision(2) << totalSales << '\n';
}

)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

140 Arrays Solutions

Chapter 4

53 cout << "\nTotal" << setw(8) << setprecision(2) << productSales[1];

55 for (int j = 2; j < PRODUCTS; ++j)
56 cout << setw(12) << setprecision(2) << productSales[j 1;

58 cout << endl;

60 return 0;

Enter the salesperson (1 - 4), product number (1 - 5), and total sales.
Enter -1 for the salesperson to end input.

1109.99

3 3 5.99

2 2 4.99

-1

The total sales for each salesperson are displayed at the end of each row,

and the total sales for each product are displayed at the bottom of each
column.

1 2 3 4 5 Total
1 9.99 0.00 0.00 0.00 0.00 9.99
2 0.00 4.99 0.00 0.00 0.00 4.99
3 0.00 0.00 5.99 0.00 0.00 5.99
4 0.00 0.00 0.00 0.00 0.00 0.00
Total 9.99 4.99 5.99 0.00 0.00

4.23 (Turtle Graphics) The Logo language, which is particularly popular among personal computer users, made the concept of
turtle graphics famous. Imagine a mechanical turtle that walks around the room under the control of a C++ program. The turtle
holds a pen in one of two positions, up or down. While the pen is down, the turtle traces out shapes as it moves; while the pen is up,
the turtle moves about freely without writing anything. In this problem, you will simulate the operation of the turtle and create a

computerized sketchpad as well.

Use a 20-by-20 array £loor that is initialized to zeros. Read commands from an array that contains them. Keep track of the
current position of the turtle at all times and whether the pen is currently up or down. Assume that the turtle always starts at posi-

tion 0,0 of the floor with its pen up. The set of turtle commands your program must process are as follows:

Command Meaning

Pen up
Pen down
Turn right
Turn left

i
o

Move forward 10 spaces (or a number other than 10)
Print the 20-by-20 array
End of data (sentinel)

o o U W N PR

Suppose that the turtle is somewhere near the center of the floor. The following “program” would draw and print a 12-by-12

square and end with the pen in the up position:

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 141

VaARUWUW
-
[y
S}

As the turtle moves with the pen down, set the appropriate elements of array £1loor to 1’s. When the 6 command (print) is given,
wherever there is a 1 in the array, display an asterisk or some other character you choose. Wherever there is a zero, display a blank.
Write a program to implement the turtle graphics capabilities discussed here. Write several turtle graphics programs to draw
interesting shapes. Add other commands to increase the power of your turtle graphics language.

// Exercise 4.23 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

const int MAXCOMMANDS = 100, SIZE = 20;

NV OONOGBAWN—

10 int turnRight(int);

11 int turnLeft(int);

12 void getCommands(int [1[2 1);

13 void movePen(int, int [][SIZE], int, int);
14 +woid printArray(const int [][SIZE]);

15

16 int main()

17 {

18 int floor[SIZE][SIZE] = { 0 }, command, direction = 0,
19 commandArray[MAXCOMMANDS 1[2] = { 0 }, distance, count = 0;
20 bool penDown = false;

21

22 getCommands (commandArray) ;

23 command = commandArray[count 1[0 1;

24

25 while (command != 9) {

26 switch (command) {

27 case 1:

28 penDown = false;

29 break;

30 case 2:

31 penDown = true;

32 break;

33 case 3:

34 direction = turnRight(direction);

35 break;

36 case 4:

37 direction = turnLeft(direction);

38 break;

39 case 5:

40 distance = commandArray[count][1];
41 movePen(penDown, floor, direction, distance);
42 break;

43 case 6:

44 cout << "\nThe drawing is:\n\n";

45 printArray(f£loor);

46 break;

47 }

48

49 command = commandArray|[++count][0];

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

142 Arrays Solutions Chapter 4

50 }

51

52 return 0;

53 3

54

55 +void getCommands(int commands[][2])

56 {

57 int tempCommand;

58

59 cout << "Enter command (9 to end input): ";
60 cin >> tempCommand;

61

62 for (int i = 0; tempCommand != 9 && i < MAXCOMMANDS; ++i) {
63 commands[i][0] = tempCommand;

64

65 if (tempCommand == 5) {

66 cin.ignore(); // skip comma

67 cin >> commands[i][1 1;

68 }

69

70 cout << "Enter command (9 to end input): ";
71 cin >> tempCommand;

72 }

73

74 commands[i][0 1 = 9; // last command
75 1}

76

77 int turnRight(int 4)

78 {

79 return ++d > 3 ? 0 : d4;

80

81

82 int turnLeft(int 4)

83 {

84 return --d < 0 ? 3 : d;

85

86

87 void movePen(int down, int al[l[SIZE], int dir, int dist)
88 {

89 static int xPos = 0, yPos = 0;

90 int j; // looping variable

91

92 switch (dir) {

93 case 0: // move to the right

94 for (j = 1; j <= dist && yPos + Jj < SIZE; ++j)
95 if (down)

96 al[xPos][yPos + § 1 = 1;

97

98 yPos += j - 1;

99 break;

100 case 1: // move down

101 for (j = 1; j <= dist && xPos + j < SIZE; ++j)
102 if (down)

103 al xPos + j 1[yPos] = 1;

104

105 xXPos += j - 1;

106 break;

107 case 2: // move to the left

108 for (j = 1; j <= dist && yPos - j >= 0; ++3)
109 if (down)

110 a[xPos 1[yPos - j 1 = 1;

111

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4

Arrays Solutions 143

yPos -= j - 1;
break;
case 3: // move up

for (j = 1; j <= dist && xPos - j >= 0; ++j
if (down)

al xPos - j 1[yPos] = 1;

xXPos -

break;

j -

1;

124 void printArray(const int a[]l[SIZE])

112
113
114
115
116
117
118
119
120
121
122 3}
123
125 {
126
127
128
129
130
131
132 3}
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

for (int i
for (int j
cout << (a

cout <<

command
command
command
command
command
command
command
command
command
command
command

(9
(9
(9
(9
(9
(9
(9
(9
(9
(9
(9

The drawing is:

4.24

0;

endl;

to
to
to
to
to
to
to
to
to
to
to

end
end
end
end
end
end
end
end
end
end
end

i < SIZE; ++i) {
0; j < SIZE; ++3j)
[i1l 312 '* ' ');

input) :
input) :
input) :
input) :
input):
input) :
input) :
input):
input) :
input) :
input):

-
[
N

1
6
9

(Knight’s Tour) One of the more interesting puzzlers for chess buffs is the Knight’s Tour problem, originally proposed by

the mathematician Euler. The question is this: Can the chess piece called the knight move around an empty chessboard and touch

each of the 64 squares once and only once? We study this intriguing problem in depth here.

The knight makes L-shaped moves (over two in one direction and then over one in a perpendicular direction). Thus, from a
square in the middle of an empty chessboard, the knight can make eight different moves (numbered O through 7) as shown in Fig.

4.25.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

144 Arrays Solutions Chapter 4

Fig. 4.25
a)

b)

The eight possible moves of the knight.

Draw an 8-by-8 chessboard on a sheet of paper and attempt a Knight’s Tour by hand. Put a 1 in the first square you
move to, a 2 in the second square, a 3 in the third, etc. Before starting the tour, estimate how far you think you will get,
remembering that a full tour consists of 64 moves. How far did you get? Was this close to your estimate?

Now let us develop a program that will move the knight around a chessboard. The board is represented by an 8-by-8
double-subscripted array board. Each of the squares is initialized to zero. We describe each of the eight possible
moves in terms of both their horizontal and vertical components. For example, a move of type 0, as shown in Fig. 4.25,
consists of moving two squares horizontally to the right and one square vertically upward. Move 2 consists of moving
one square horizontally to the left and two squares vertically upward. Horizontal moves to the left and vertical moves
upward are indicated with negative numbers. The eight moves may be described by two single-subscripted arrays,
horizontal and vertical, as follows:

n
N

horizontall
horizontall
horizontall
horizontall
horizontall
horizontall
horizontall
horizontall

-1
-2

-1

NJNouk WNhNRE O
e e et e b et

n
N

n
1
[

verticall
verticall
verticall
verticall
verticall
verticall
verticall
verticall

Noauk WNPRE O
e e et et e et
[I | O | I}
R NDNR 1

N

Let the variables currentRowand currentColumn indicate the row and column of the knight’s current position.
To make a move of type moveNumber, where moveNumber is between 0 and 7, your program uses the statements

currentRow += vertical[moveNumber];
currentColumn += horizontal[moveNumber];

Keep a counter that varies from 1 to 64. Record the latest count in each square the knight moves to. Remember to test
each potential move to see if the knight has already visited that square, and, of course, test every potential move to

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 145

make sure that the knight does not land off the chessboard. Now write a program to move the knight around the chess-
board. Run the program. How many moves did the knight make?

c) After attempting to write and run a Knight’s Tour program, you have probably developed some valuable insights. We
will use these to develop a heuristic (or strategy) for moving the knight. Heuristics do not guarantee success, but a care-
fully developed heuristic greatly improves the chance of success. You may have observed that the outer squares are
more troublesome than the squares nearer the center of the board. In fact, the most troublesome, or inaccessible, squares
are the four corners.

Intuition may suggest that you should attempt to move the knight to the most troublesome squares first and leave
open those that are easiest to get to, so when the board gets congested near the end of the tour, there will be a greater
chance of success.

We may develop an “accessibility heuristic” by classifying each of the squares according to how accessible they
are and then always moving the knight to the square (within the knight’s L-shaped moves, of course) that is most inac-
cessible. We label a double-subscripted array accessibility with numbers indicating from how many squares
each particular square is accessible. On a blank chessboard, each center square is rated as 8, each corner square is
rated as 2 and the other squares have accessibility numbers of 3, 4 or 6 as follows:

NDNWk BB WDN
Wk bW
B 0L 00 00 00 0 G I
> OV 00 00 00 0 O I
> O\ 00 0 00 0 O Id
¥ O\ 00 00 00 O O I
Wik bW
DWWk BB WDN

Now write a version of the Knight’s Tour program using the accessibility heuristic. At any time, the knight should
move to the square with the lowest accessibility number. In case of a tie, the knight may move to any of the tied
squares. Therefore, the tour may begin in any of the four corners. (Note: As the knight moves around the chessboard,
your program should reduce the accessibility numbers as more and more squares become occupied. In this way, at any
given time during the tour, each available square’s accessibility number will remain equal to precisely the number of
squares from which that square may be reached.) Run this version of your program. Did you get a full tour? Now mod-
ify the program to run 64 tours, one starting from each square of the chessboard. How many full tours did you get?

d) Write a version of the Knight’s Tour program which, when encountering a tie between two or more squares, decides
what square to choose by looking ahead to those squares reachable from the “tied” squares. Your program should move
to the square for which the next move would arrive at a square with the lowest accessibility number.

1 // Exercise 4.24 Part C Solution
2 // Knight's Tour - access version
3 // runs one tour

4 #include <iostream>

5

6 wusing std::cout;

7 using std::endl;

8

9 #include <iomanip>

10

11 using std::setw;

12

13 #include <cstdlib>
14 #include <ctime>

16 const int SIZE = 8;
18 void clearBoard(int []1[SIZE 1);

19 wvoid printBoard(const int []1[SIZE]);
20 bool validMove(int, int, const int []1[SIZE 1);

21

22 int main()

23 {

24 int board[SIZE][SIZE], currentRow, currentColumn, moveNumber = 0,

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

146 Arrays Solutions Chapter 4

25 access[SIZE][SIZE] = { 2, 3, 4, 4, 4, 4, 3, 2,
26 3, 4, 6, 6, 6, 6, 4, 3,

27 4, 6, 8, 8, 8, 8, 6, 4,

28 4, 6, 8, 8, 8, 8, 6, 4,

29 4, 6, 8, 8, 8, 8, 6, 4,

30 4, 6, 8, 8, 8, 8, 6, 4,

31 3, 4, 6, 6, 6, 6, 4, 3,

32 2, 3, 4, 4, 4, 4, 3, 2},

33

34 testRow, testColumn, minRow, minColumn,

35 minAccess = 9, accessNumber,

36 horizontal[SIZE] = { 2, 1, -1, -2, -2, -1, 1, 2},
37 vertical[SIZE] = { -1, -2, -2, -1, 1, 2, 2, 1 };
38 bool done;

39

40 srand(time(0));

41

42 clearBoard(board); // initialize array board

43 currentRow = rand() % 8;

44 currentColumn = rand() % 8;

45 board[currentRow][currentColumn] = ++moveNumber;

46 done = false;

47

48 while (!done) {

49 accessNumber = minAccess;

50

51 for (int moveType = 0; moveType < SIZE; ++moveType) {
52 testRow = currentRow + vertical[moveType 1]:;

53 testColumn = currentColumn + horizontal[moveType 1];
54

55 if (validMove(testRow, testColumn, board)) {
56

57 if (access[testRow][testColumn] < accessNumber) {
58 accessNumber = access[testRow][testColumn];
59 minRow = testRow;

60 minColumn = testColumn;

61 }

62

63 --access[testRow][testColumn];

64 }

65 }

66

67 if (accessNumber == minAccess)

68 done = true;

69 else {

70 currentRow = minRow;

71 currentColumn = minColumn;

72 board[currentRow][currentColumn] = ++moveNumber;
73 }

74 }

75

76 cout << "The tour ended with " << moveNumber << " moves.\n";
77

78 if (moveNumber == 64)

79 cout << "This was a full tour!\n\n";

80 else

81 cout << "This was not a full tour.\n\n";

82

83 cout << "The board for this test is:\n\n";

84 printBoard(board);

85

86 return 0;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 147

87

89 woid clearBoard(int workBoard[][SIZE])
90 {

91 for (int row = 0; row < SIZE; ++row)
92 for (int col = 0; col < SIZE; ++col)
93 workBoard[row][col] = 0;

94 3}

96 void printBoard(const int workBoard[]l[SIZE])
97 {
98 cout << " 0 1 2 3 4 5 6 7\n";

100 for (int row = 0; row < SIZE; ++row) {
101 cout << row;

103 for (int col = 0; col < SIZE; ++col)
104 cout << setw(3) << workBoard[row][col 1;

106 cout << '\n';

107 }

108

109 cout << endl;

110 3

111

112 bool validMove(int row, int column, const int workBoard[][SIZE])

113 {

114 // NOTE: This test stops as soon as it becomes false

115 return (row >= 0 && row < SIZE && column >= 0 && column < SIZE
116 && workBoard[row 1[column] == 0);

117 1}

The tour ended with 64 moves.
This was a full tour!

The board for this test is:

0 1 2 3 4 5 6 7
7 36 5 44 9 34 29 56
4 45 8 35 30 55 10 33
37 6 43 50 47 32 57 28
42 3 46 31 58 49 54 11
21 38 51 48 53 60 27 62
2 41 20 59 24 63 12 15
19 22 39 52 17 14 61 26
40 1 18 23 64 25 16 13

Nouk W PR O

4.25 (Knight’s Tour: Brute-Force Approaches) In Exercise 4.24, we developed a solution to the Knight’s Tour problem. The
approach used, called the “accessibility heuristic,” generates many solutions and executes efficiently.

As computers continue increasing in power, we will be able to solve more problems with sheer computer power and relatively
unsophisticated algorithms. Let us call this approach “brute force” problem solving.
a) Use random-number generation to enable the knight to walk around the chessboard (in its legitimate L-shaped moves,
of course) at random. Your program should run one tour and print the final chessboard. How far did the knight get?
b) Most likely, the preceding program produced a relatively short tour. Now modify your program to attempt 1000 tours.
Use a single-subscripted array to keep track of the number of tours of each length. When your program finishes attempt-
ing the 1000 tours, it should print this information in neat tabular format. What was the best result?

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

148 Arrays Solutions

Chapter 4

¢) Most likely, the preceding program gave you some “respectable” tours, but no full tours. Now “pull all the stops out”

and simply let your program run until it produces a full tour. (Caution: This version of the program could run for hours
on a powerful computer.) Once again, keep a table of the number of tours of each length, and print this table when the
first full tour is found. How many tours did your program attempt before producing a full tour? How much time did it

take?

d) Compare the brute-force version of the Knight’s Tour with the accessibility-heuristic version. Which required a more
careful study of the problem? Which algorithm was more difficult to develop? Which required more computer power?
Could we be certain (in advance) of obtaining a full tour with the accessibility heuristic approach? Could we be certain
(in advance) of obtaining a full tour with the brute-force approach? Argue the pros and cons of brute-force problem

solving in general.

—ONVONOCOEA WN—

12

// Exercise 4.25 Part A Solution
#include <iostream>

using std::cout;
using std::endl;

#include <iomanip>
using std::setw;

#include <cstdlib>
#include <ctime>

const int SIZE = 8;

bool validMove(int, int, const int

[1[SIZE])

void printBoard(const int [][SIZE]);

int main()

{

int currentRow, currentColumn, moveType,

.
I

moveNumber = 0,

testRow, testColumn, board[SIZE][SIZE] = { 0 },

horizontall[SIZE] = { 2, 1,
vertical[SIZE] = { -1, -2,
bool done, goodMove;

srand(time(0));

currentRow = rand() % SIZE;
currentColumn = rand() % SIZE;

-1, -2, -2,
_21 _11 11 21 21 1 };

_11 11 2 }I

board[currentRow][currentColumn] = ++moveNumber;

done = false;

while (!done) {
moveType = rand() % SIZE;

testRow = currentRow + vertical[moveType 1]:;
testColumn = currentColumn + horizontal[moveType];

goodMove = validMove(testRow,

if (goodMove) {
currentRow = testRow;
currentColumn = testColumn;

testColumn,

board[currentRow][currentColumn] =

}
else {

board);

++moveNumber ;

for (int count = 0; count < SIZE - 1 && !goodMove;
moveType = ++moveType % SIZE;
testRow = currentRow + vertical[moveType]:;
testColumn = currentColumn + horizontal[moveType];

++count) {

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 149

51 goodMove = validMove(testRow, testColumn, board);
52

53 if (goodMove) {

54 currentRow = testRow;

55 currentColumn = testColumn;

56 board[currentRow][currentColumn] = ++moveNumber;
57 }

58 }

59

60 if (!goodMove)

61 done = true;

62 }

63

64 if (moveNumber == 64)

65 done = true;

66 }

67

68 cout << "The tour has ended with " << moveNumber << " moves.\n";
69

70 if (moveNumber == 64)

71 cout << "This was a full tour!\n";

72 else

73 cout << "This was not a full tour.\n";

74

75 cout << "The board for this random test was:\n\n";
76 printBoard(board);

77 return 0;

78 1}

79

80 bool validMove(int row, int column, const int workBoard[]l[SIZE])
81 (

82 // NOTE: This test stops as soon as it becomes false
83 return (row >= 0 && row < SIZE && column >= 0 && column < SIZE
84 && workBoard[row][column] == 0);

85 1}

86

87 void printBoard(const int board[][SIZE])

88 {

89 cout << " 0 1 2 3 4 5 6 7\n";

90

91 for (int row = 0; row < SIZE; ++row) {

92 cout << row;

93

94 for (int col = 0; col < SIZE; ++col)

95 cout << setw(3) << board[row][col 1;

96

97 cout << '\n';

98 }

99

100 cout << endl;

101 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

150 Arrays Solutions Chapter 4
The tour has ended with 30 moves.
This was not a full tour.
The board for this random test was:
0 1 2 3 4 5 6 17
03027 017 O 014 O
1 018 25 28 15 0 O O
2 26 29 16 21 0 O O 13
3 024 19 01122 0 O
4 0 1 023 20 9 12 7
5 0 0 010 0 6 O O
6 2 0 0 O 4 0 8 O
7 0 0 3 0 O O 5 o0
1 // Exercise 4.25 Part B Solution
2 $#include <iostream>
3
4 using std::cout;
5 using std::endl;
6 #include <iomanip>
7
8 using std::setw;
9
10 #include <cstdlib>
11 #include <ctime>
12
13 const int SIZE = 8, TOURS = 1000, MAXMOVES = 65;
14
15 bool validMove(int, int, int, const int [][SIZE]);
16
17 4int main()
18 {
19 int currentRow, currentColumn, moveType, moveNumber, testRow, testColumn,
20 moveTotal[MAXMOVES] = { 0 }, goodMove, board[SIZE][SIZE],
21 horizontal[SIZE] = { 2, 1, -1, -2, -2, -1, 1, 2 },
22 vertical[SIZE] = { -1, -2, -2, -1, 1, 2, 2, 1 };
23 bool done;
24
25 srand(time(0));
26
27 for (int i = 0; i < TOURS; ++i) {
28 for (int row = 0; row < SIZE; ++row)
29 for (int col = 0; col < SIZE; ++col)
30 board[row][col] = 0;
31
32 moveNumber = 0;
33
34 currentRow = rand() % SIZE;
35 currentColumn = rand() % SIZE;
36 board[currentRow][currentColumn] = ++moveNumber;
37 done = false;
38
39 while (!done) {
40 moveType = rand() % SIZE;
41 testRow = currentRow + vertical[moveType 1];
42 testColumn = currentColumn + horizontal[moveType 1];
43 goodMove = validMove(testRow, testColumn, moveType, board);
44

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions

151

45 if (goodMove) {

46 currentRow = testRow;

47 currentColumn = testColumn;

48 board[currentRow][currentColumn] = ++moveNumber;

49 }

50 else {

51

52 for (int count = 0; count < SIZE - 1 && !goodMove; ++count) {
53 moveType = ++moveType % SIZE;

54 testRow = currentRow + vertical[moveType 1;

55 testColumn = currentColumn + horizontal[moveType 1;
56 goodMove = validMove(testRow, testColumn, moveType, board);
57

58 if (goodMove) {

59 currentRow = testRow;

60 currentColumn = testColumn;

61 board[currentRow][currentColumn] = ++moveNumber;
62 }

63

64 }

65

66 if (!goodMove)

67 done = true;

68 }

69

70 if (moveNumber == 64)

71 done = true;

72 }

73

74 ++moveTotal [moveNumber];

75 }

76

77 for (int j = 1; j < MAXMOVES; ++j)

78 if (moveTotall j 1)

79 cout << "There were " << moveTotal[j] << " tours of " << j
80 << " moves." << endl;

81

82 return 0;

83 1}

84

85 bool validMove(int testRow, int testColumn, int moveType,

86 const int board[][SIZE])

87 (

88 if (testRow >= 0 && testRow < SIZE && testColumn >= 0 &&

89 testColumn < SIZE)

90 return board[testRow][testColumn] != 0 ? false : true;

91 else

92 return false;

93 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

152 Arrays Solutions

There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There

were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were
were

ok abDwWwR

tours
tours
tours
tours
tours
tours
tours
tours

of
of
of
of
of
of
of
of

Chapter 4

5 moves.
6 moves.
8 moves.

10
11
12
13
14

moves.
moves.
moves.
moves.
moves.

11 tours of 15 moves.
7 tours of 16 moves.
5 tours of 17 moves.
15 tours of 18 moves.
6 tours of 19 moves.
11 tours of 20 moves.
6 tours of 21 moves.

10
19
20
12
25
21
29
24
23
23
25
26
34
32
30
24
42
21
42
31
49
46
42
28
33
31
28
22
24
17
22
12
13
13
6

4

4

2

tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours
tours

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.
moves.

(Eight Queens) Another puzzler for chess buffs is the Eight Queens problem. Simply stated: Is it possible to place eight
queens on an empty chessboard so that no queen is “attacking” any other, i.e., no two queens are in the same row, the same column,
or along the same diagonal? Use the thinking developed in Exercise 4.24 to formulate a heuristic for solving the Eight Queens prob-
lem. Run your program. (Hint: It is possible to assign a value to each square of the chessboard indicating how many squares of an
empty chessboard are “eliminated” if a queen is placed in that square. Each of the corners would be assigned the value 22, as in Fig.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4

Arrays Solutions 153

4.26.) Once these “elimination numbers” are placed in all 64 squares, an appropriate heuristic might be: Place the next queen in the
square with the smallest elimination number. Why is this strategy intuitively appealing?

4.27

* %k % F % ¥ * X
*

Fig. 4.26 The 22 squares eliminated by placing a queen in the upper-left corner.

(Eight Queens: Brute-Force Approaches) In this exercise, you will develop several brute-force approaches to solving the
Eight Queens problem introduced in Exercise 4.26.
a) Solve the Eight Queens exercise, using the random brute-force technique developed in Exercise 4.25.

b) Use an exhaustive technique, i.e., try all possible combinations of eight queens on the chessboard.

¢) Why do you suppose the exhaustive brute-force approach may not be appropriate for solving the Knight’s Tour prob-

lem?

d) Compare and contrast the random brute-force and exhaustive brute-force approaches in general.

VOO NOGBTAWN —

// Exercise 4.27 Part A Solution
#include <iostream>

using std::cout;
using std::endl;

#include <iomanip>
using std::setw;

#include <ctime>
#include <cstdlib>

bool queenCheck(const char [][8], int, int);
void placeQueens(char [][8 1);

void printBoard(const char [][8 1);

void xConflictSquares(char [][8], int, int);
void xDiagonals(char [][8], int, int);

bool availableSquare(const char [][8 1);

inline int validMove(const char board[][8], int row, int col)

{ return (row >= 0 && row < 8 && col >= 0 && col < 8); }

int main()

‘ char board [8 1[8 1 = { '\0' };
srand(time(0));
placeQueens(board);
printBoard(board):;
return 0;

}

bool availableSquare(const char board[][8 1)
{

for (int row = 0; row < 8; ++row)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

154 Arrays Solutions Chapter 4

38 for (int col = 0; col < 8; ++col)

39 if (board[row][col] == '\0')

40 return false; // at least one open square is available
41

42 return true; // no available squares

43)

44

45 void placeQueens(char board[][8 1)

46 {

47 const char QUEEN = 'Q';

48 int rowMove, colMove, queens = 0;

49 bool done = false;

50

51 while (queens < 8 && !done) {

52 rowMove = rand() % 8;

53 colMove = rand() % 8;

54

55 if (queenCheck(board, rowMove, colMove)) {

56 board[rowMove][colMove] = QUEEN;

57 xConflictSquares(board, rowMove, colMove);

58 ++Qgueens;

59 }

60

61 done = availableSquare(board);

62 }

63 1}

64

65 +void xConflictSquares(char board[][8 1, int row, int col)
66 {

67 for (int loop = 0; loop < 8; ++loop) {

68 // place an '*' in the row occupied by the queen

69 if (board[row][loop 1 == '\0')

70 board[row][loop] = '*';

71

72 // place an '*' in the col occupied by the queen

73 if (board[loop][col] == '\0')

74 board[loop][col] = '*';

75 }

76

77 // place an '*' in the diagonals occupied by the queen
78 xDiagonals(board, row, col);

79 1}

80

81 bool queenCheck(const char board[][8], int row, int col)
82 {

83 int r = row, ¢ = col;

84

85 // check row and column for a queen

86 for (int d = 0; 4 < 8; ++d)

87 if (board[row][4 1 == 'Q' || board[d 1[col] == 'Q"')
88 return false;

89

90 // check upper left diagonal for a queen

921 for (int e = 0; e < 8 && validMove(board, --r, --c); ++e)
92 if (board[r I[c] == 'Q')

93 return false;

94

95 r = row;

96 c = col;

97 // check upper right diagonal for a queen

98 for (int £ = 0; £ < 8 && validMove(board, --r, ++c); ++f)
99 if (board[r 1[¢] == 'Q')

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 155

100 return false;

101

102 r = row;

103 c = col;

104 // check lower left diagonal for a queen

105 for (int g = 0; g < 8 && validMove(board, ++r, --c); ++g)
106 if (board[r 1[¢ 1 == 'Q')

107 return false;

108

109 r = row;

110 c = col;

111 // check lower right diagonal for a queen

112 for (int h = 0; h < 8 && validMove(board, ++r, ++c); ++h)
113 if ((board[r][¢] == 'Q')

114 return false;

115

116 return true; // no queen in conflict

117 3}

118

119 wvoid xDiagonals(char board[][8], int row, int col)
120 ¢

121 int r = row, ¢ = col;

122

123 // upper left diagonal

124 for (int a = 0; a < 8 && validMove(board, --r, --c); ++a)
125 board[r][¢] = '*';

126

127 r = row;

128 c = col;

129 // upper right diagonal

130 for (int b = 0; b < 8 && validMove(board, --r, ++c); ++b)
131 board[r][¢] = '*';

132

133 r = row;

134 c = col;

135 // lower left diagonal

136 for (int d = 0; 4 < 8 && validMove(board, ++r, --c); ++d)
137 board[r][¢] = '*';

138

139 r = row;

140 c = col;

141 // lower right diagonal

142 for (int e = 0; e < 8 && validMove(board, ++r, ++c); ++e)
143 board[r][¢] = '*';

144 3

145

146 void printBoard(const char board[][8])

147 ¢

148 int queens = 0;

149

150 // header for columns

151 cout << " 0123456 7\n";

152

153 for (int r = 0; r < 8; ++r) {

154 cout << setw(2) << r << ' ';

155

156 for (int ¢ = 0; ¢ < 8; ++c) {

157 cout << board[r][¢] << ' ';

158

159 if (board[r][¢ 1 == 'Q')

160 ++Queens;

161 }

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

156 Arrays Solutions

Chapter 4

162
163
164
165

167
168
169
170

Nouk WwWh PR O

cout << '\n';

}
if (queens == 8)
cout << "\nEight Queens were placed on the board!" << endl;
else
cout << '\n' << queens << " Queens were placed on the board." << endl;
}
01234567
****Q***
*Q******
*****Q**
Q***
* % % % % % % %
*******Q
Q*******
Q*

7 Queens were placed on the board.

4.28

(Knight’s Tour: Closed-Tour Test) In the Knight’s Tour, a full tour occurs when the knight makes 64 moves touching each
square of the chess board once and only once. A closed tour occurs when the 64th move is one move away from the location in
which the knight started the tour. Modify the Knight’s Tour program you wrote in Exercise 4.24 to test for a closed tour if a full
tour has occurred.

NV OONOOTRARWN—

// Exercise 4.28 Solution
#include <iostream>

using std::cout;
using std::endl;

#include <iomanip>
using std::setw;

#include <cstdlib>
#include <ctime>

const int SIZE = 8;

void clearBoard(int [][SIZE]):;
void printBoard(const int [][SIZE]);
bool validMove(int, int, const int [][SIZE]);

int main()
{
int board[SIZE][SIZE], firstMoveRow, firstMoveCol,
access[SIZE][SI1zE] = { 2, 3, 4, 4, 4, 4, 3, 2,
3, 4, 6, 6, 6, 6, 4, 3,
4, 6, 8, 8, 8, 8, 6, 4,
4, 6, 8, 8, 8, 8, 6, 4,
4, 6, 8, 8, 8, 8, 6, 4,
4, 6, 8, 8, 8, 8, 6, 4,
3, 4, 6, 6, 6, 6, 4, 3,
2, 3, 4, 4, 4, 4, 3, 2},
currentRow, currentColumn, moveNumber = 0, testRow,
minRow, minColumn, minAccess = 9, accessNumber,

testColumn,

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4

Arrays Solutions 157

33 horizontal[SIZE] = { 2, 1, -1, -2, -2, -1, 1, 2 },
34 vertical[SIZE] = { -1, -2, -2, -1, 1, 2, 2, 1 };

35 bool done, closedTour = false;

36

37 srand(time(0));

38

39 clearBoard(board); // initialize array board

40 currentRow = rand() % SIZE;

41 currentColumn = rand() % SIZE;

42 firstMoveRow = currentRow; // store first moves row
43 firstMoveCol = currentColumn; // store first moves col
44

45 board[currentRow][currentColumn] = ++moveNumber;

46 done = false;

47

48 while (!done) {

49 accessNumber = minAccess;

50

51 for (int moveType = 0; moveType < SIZE; ++moveType) {
52 testRow = currentRow + vertical[moveType 1];

53 testColumn = currentColumn + horizontal[moveType 1;
54

55 if (validMove(testRow, testColumn, board)) {

56 if (access[testRow][testColumn] < accessNumber) {
57 accessNumber = access[testRow][testColumn];
58 minRow = testRow;

59 minColumn = testColumn;

60 }

61

62 --access[testRow][testColumn];

63 }

64 }

65

66 if (accessNumber == minAccess)

67 done = true;

68 else {

69 currentRow = minRow;

70 currentColumn = minColumn;

71 board[currentRow][currentColumn] = ++moveNumber;
72

73 // check for closed tour

74 if (moveNumber == 64)

75 for (int m = 0; m < SIZE; ++m) {

76 testRow = currentRow + verticall m];

77 testColumn = currentColumn + horizontal[m];
78

79 if (testRow == firstMoveRow && testColumn == firstMoveCol)
80 closedTour = true;

81 }

82 }

83 }

84

85 cout << "The tour ended with " << moveNumber << " moves.\n";
86

87 if (moveNumber == 64 && closedTour == true)

88 cout << "This was a CLOSED tour!\n\n";

89 else if (moveNumber == 64)

90 cout << "This was a full tour!\n\n";

91 else

92 cout << "This was not a full tour.\n\n";

93

94 cout << "The board for this test is:\n\n";

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

158

Arrays Solutions

Chapter 4

95

97
98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

printBoard(board);

return 0;

}

void clearBoard(int workBoard[][SIZE])
{

for (int row

}

for (int col
workBoard [

0;

row < SIZE; ++row)

0; col < SIZE;

++col)

row][col] = 0;

void printBoard(const int workBoard[][SIZE])
{

cout << "

for (int row

}

0

1

cout << row;

2

0;

3 4 5 6

7\n";

row < SIZE; ++row) {

for (int col = 0; col < SIZE;

cout <<

cout << setw(3

'\n';

cout << endl;

}

bool validMove(int row, int column,

{

// NOTE: This test stops as soon as it becomes false
return (row >= 0 && row < SIZE && column >= 0 && column < SIZE

++col)

const int workBoard[][SIZE]

&& workBoard[row][column] ==

The tour ended with 64 moves.
This was a full tour!

The board for this test is:

Nouk W PR O

4.29

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

0
42
49
26

9
44
13
28
11

1
25

8
43
56
27
10
35
14

2
50
41
48
45
64
57
12
29

3

7
24
55
60
47
36
15
34

4

5

6

40 23 52

51
46
63
58
61
30

1

6
59
54
37
18
33
16

39

4
21
62
31

2
19

7
5
22
53
38
3
20
17
32

) << workBoard[row][col];

0);

)

(The Sieve of Eratosthenes) A prime integer is any integer that is evenly divisible only by itself and 1. The Sieve of Era-
tosthenes is a method of finding prime numbers. It operates as follows:
a) Create an array with all elements initialized to 1 (true). Array elements with prime subscripts will remain 1. All other
array elements will eventually be set to zero.
b) Starting with array subscript 2 (subscript 1 must be prime), every time an array element is found whose value is 1, loop
through the remainder of the array and set to zero every element whose subscript is a multiple of the subscript for the
element with value 1. For array subscript 2, all elements beyond 2 in the array that are multiples of 2 will be set to zero
(subscripts 4, 6, 8, 10, etc.); for array subscript 3, all elements beyond 3 in the array that are multiples of 3 will be set
to zero (subscripts 6, 9, 12, 15, etc.); and so on.

Chapter 4 Arrays Solutions 159

When this process is complete, the array elements that are still set to one indicate that the subscript is a prime number. These sub-
scripts can then be printed. Write a program that uses an array of 1000 elements to determine and print the prime numbers between
1 and 999. Ignore element O of the array.

NV OONOGBAWN—

// Exercise 4.29 Solution
#include <iostream>

using std::cout;
using std::endl;

#include <iomanip>

using std::setw;

11 int main()

12 ¢

3 is
5 is
7 is
11 is
983 is
991 is
997 is

const int SIZE = 1000;
int array[SIZE], count = 0;

for (int k
array[k

++k)

—_ I
n o
~
w
A
0
H
N
=
~

for (int i = 1; i < SIZE; ++i)
if (array[i] == 1 && i != 1)
for (int j = i; j <= SIZE; ++j)
if (j % i ==0&& j !=1i)
1

// range 2 - 197

for (int @ = 2; g < SIZE; ++q)
if (arrayl @ 1 == 1) {
cout << setw(3) << q << " is a prime number.\n";

++count;

}

cout << "A total of " << count << " prime numbers were found." << endl;

return 0;

a prime number.
a prime number.
a prime number.
a prime number.
a prime number.
a prime number.
a prime number.

A total of 168 prime numbers were found.

4.30 (Bucket Sorf) A bucket sort begins with a single-subscripted array of positive integers to be sorted and a double-subscripted
array of integers with rows subscripted from 0 to 9 and columns subscripted from O to n - 1, where # is the number of values in the
array to be sorted. Each row of the double-subscripted array is referred to as a bucket. Write a function bucketSort that takes an
integer array and the array size as arguments and performs as follows:

a)

b)

<)

Place each value of the single-subscripted array into a row of the bucket array based on the value’s ones digit. For ex-
ample, 97 is placed in row 7, 3 is placed in row 3 and 100 is placed in row 0. This is called a “distribution pass.”
Loop through the bucket array row by row, and copy the values back to the original array. This is called a “gathering
pass.” The new order of the preceding values in the single-subscripted array is 100, 3 and 97.

Repeat this process for each subsequent digit position (tens, hundreds, thousands, etc.).

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

160 Arrays Solutions Chapter 4

On the second pass, 100 is placed in row 0, 3 is placed in row O (because 3 has no tens digit) and 97 is placed in row 9. After the
gathering pass, the order of the values in the single-subscripted array is 100, 3 and 97. On the third pass, 100 is placed in row 1, 3
is placed in row zero and 97 is placed in row zero (after the 3). After the last gathering pass, the original array is now in sorted
order.

Note that the double-subscripted array of buckets is 10 times the size of the integer array being sorted. This sorting technique
provides better performance than a bubble sort, but requires much more memory. The bubble sort requires space for only one addi-
tional element of data. This is an example of the space—time trade-off: The bucket sort uses more memory than the bubble sort, b ut
performs better. This version of the bucket sort requires copying all the data back to the original array on each pass. Another possi-
bility is to create a second double-subscripted bucket array and repeatedly swap the data between the two bucket arrays.

1 // Exercise 4.30 Solution
2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 #include <iomanip>

8

9 using std::setw;

10

11 // constant size must be defined as the array size for bucketSort to work
12 const int SIZE = 12;

14 void bucketSort(int []):;

15 +wvoid distributeElements(int [], int []1[SIZE], int);
16 void collectElements(int [], int [][SIZE]);

17 int numberOfDigits(int [], int);

18 void zeroBucket(int [][SIZE 1);

19

20 int main()

21 {

22 int array[SIze] = { 19, 13, 5, 27, 1, 26, 31, 16, 2, 9, 11, 21 };
23

24 cout << "Array elements in original order:\n";
25

26 for (int i = 0; i < SIZE; ++i)

27 cout << setw(3) << arrayl i 1;

28

29 cout << '\n';

30 bucketSort(array);

31

32 cout << "\nArray elements in sorted order:\n";
33

34 for (int j = 0; j < SIZE; ++3j)

35 cout << setw(3) << arrayl j 1:

36

37 cout << endl;

38

39 return 0;

40 1}

41

42 // Perform the bucket sort algorithm
43 void bucketSort(int al[])

44 {

45 int totalDigits, bucket[10][SIZE] = { 0 };
46

47 totalDigits = numberOfDigits(a, SIZE);

48

49 for (int 1 = 1; i <= totalDigits; ++i) {

50 distributeElements(a, bucket, i);

51 collectElements(a, bucket);

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 161

53 if (i != totalDbigits)
54 zeroBucket (bucket); // set all bucket contents to zero

56 1}

58 // Determine the number of digits in the largest number
59 int numberOfDigits(int b[], int arraySize)

60 {

61 int largest = b[0 1, digits = 0;
62

63 for (int i = 1; i < arraySize; ++i)
64 if (b[i] > largest)

65 largest = b[i];

66

67 while (largest != 0) {

68 ++digits;

69 largest /= 10;

70 }

71

72 return digits;

73 1}

74

75 // Distribute elements into buckets based on specified digit
76 void distributeElements(int a[], int buckets[][SIZE], int digit)

77 {

78 int divisor = 10, bucketNumber, elementNumber;

79

80 for (int i = 1; i < digit; ++1i) // determine the divisor
81 divisor *= 10; // used to get specific digit
82

83 for (int k = 0; k < SIZE; ++k) {

84 // bucketNumber example for hundreds digit:

85 // (1234 % 1000 - 1234 % 100) / 100 --> 2

86 bucketNumber = (al[kK] % divisor - al k1 %

87 (divisor / 10)) / (divisor / 10);

88

89 // retrieve value in buckets[bucketNumber] [0] to determine
90 // which element of the row to store al[i] in.

91 elementNumber = ++buckets[bucketNumber][0]1;

92 buckets[bucketNumber][elementNumber] = al k 1;

93 }

94 3

95

96 // Return elements to original array
97 void collectElements(int al[l, int buckets[][SIZE])

98 {

99 int subscript = 0;

100

101 for (int i = 0; i < 10; ++i)

102 for (int j = 1; j <= buckets[i][0 1; ++3)
103 a[subscript++] = buckets[i I1[j 1;

104 3

105

106 // set all buckets to zero
107 woid zeroBucket(int buckets[][SIZE])

108 ¢

109 for (int i = 0; i < 10; ++i)

110 for (int j = 0; j < SIZE; ++3j)
111 buckets[i 1[j 1 = 0;

112 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

162 Arrays Solutions

Array elements in original order:
19 13 5 27 1 26 3116 2 9 11 21

Array elements in sorted order:
1 2 5 9 11 13 16 19 21 26 27 31

RECURSION EXERCISES

Chapter 4

4.31 (Selection Sort) A selection sort searches an array looking for the smallest element in the array. Then, the smallest element
is swapped with the first element of the array. The process is repeated for the subarray beginning with the second element of the
array. Each pass of the array results in one element being placed in its proper location. This sort performs comparably to the bubble
sort—for an array of n elements, n - 1 passes must be made, and for each subarray, n - 1 comparisons must be made to find the
smallest value. When the subarray being processed contains one element, the array is sorted. Write recursive function selec-

tionsSort to perform this algorithm.

// Exercise 4.31 Solution
#include <iostream>

using std::cout;
using std::endl;

#include <cstdlib>
#include <ctime>

VOO NOGBTAWN —

10 wvoid selectionSort(int [], int);

12 int main()

13

14 const int SIZE = 10, MAXRANGE = 1000;

15 int sortThisArray[SIZE] = { 0 };

16

17 srand(time(0));

18

19 for (int i = 0; i < SIZE; ++i)

20 sortThisArray[i] = 1 + rand() % MAXRANGE;
21

22 cout << "\nUnsorted array is:\n";

23 for (int j = 0; j < SIZE; ++j)

24 cout << ' ' << sortThisArray[j 1 << ' ';
25

26 selectionSort (sortThisArray, SIZE);

27

28 cout << "\n\nSorted array is:\n";

29 for (int k = 0; k < SIZE; ++k)

30 cout << ' ' << sortThisArray[k] << ' ';
31

32 cout << '\n' << endl;

33

34 return 0;

35 3

36

37 +void selectionSort(int array[], int size)

38 {

39 int temp;

40

41 if (size >=1) {

42

43 for (int loop = 0; loop < size; ++loop)
44 if (arrayl[loop] < arrayl[0 1) {

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 163

45 temp = array[loop 1;

46 array[loop] = arrayl[0 1;

47 array[0] = temp;

48 }

49

50 selectionSort(&array[1], size - 1);
51 }

52

Unsorted array is:
957 848 727 597 384 617 228 424 878 10

Sorted array is:
10 228 384 424 597 617 727 848 878 957

4.32 (Palindromes) A palindrome is a string that is spelled the same way forwards and backwards. Some examples of palin-
dromes are “radar,” “able was i ere i saw elba” and (if blanks are ignored) “a man a plan a canal panama.” Write a recursive function
testPalindrome that returns true if the string stored in the array is a palindrome, and £alse otherwise. The function should
ignore spaces and punctuation in the string.

// Exercise 4.32 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

bool testPalindrome(const char [], int, int);

int main()

—ONVONOCOIA WN—

{
12 const int SIZE = 80;
13 char ¢, stringl[SIZE], copyl SIZE];
14 int count = 0, copyCount, i;
15
16 cout << "Enter a sentence:\n";
17
18 while ((¢ = cin.get()) != '\n' && count < SIZE)
19 string[count++ 1 = c;
20
21 string[count] = '\0'; // terminate cstring
22
23 // make a copy of cstring without spaces
24 for (copyCount = 0, i = 0; string[i 1 != "\0'; ++i)
25 if (string[i] != ' ')
26 copy[copyCount++] = string[i 1;
27
28 if (testPalindrome(copy, 0, copyCount - 1))
29 cout << '\"' << string << "\" is a palindrome" << endl;
30 else
31 cout << '\"' << string << "\" is not a palindrome" << endl;
32
33 return 0;
34 3
35
36 bool testPalindrome(const char arrayl[], int left, int right)
37 {
38 if (left == right || left > right)
39 return true;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

164 Arrays Solutions Chapter 4

40 else if (arrayl[left] != array[right])

41 return false;

42 else

43 return testPalindrome(array, left + 1, right - 1);
4 3

Enter a sentence:
alucard e dracula
"alucard e dracula" is a palindrome

4.33 (Linear Search) Modify the program in Fig. 4.19 to use recursive function 1inearSearchto perform a linear search of
the array. The function should receive an integer array and the size of the array as arguments. If the search key is found, return the
array subscript; otherwise, return —1.

1 // Exercise 4.33 Solution

2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 int linearSearch(const int [], int, int, int);
9

10 int main()

11 ¢

12 const int SIZE = 100;

13 int array[SIZE], searchKey, element;

14

15 for (int loop = 0; loop < SIZE; ++loop)

16 array[loop 1 = 2 * loop;

17

18 cout << "Enter the integer search key: ";

19 cin >> searchKey;

20

21 element = linearSearch(array, searchKey, 0, SIZE - 1);
22

23 if (element != -1)

24 cout << "Found value in element " << element << endl;
25 else

26 cout << "Value not found" << endl;

27

28 return 0;

29)
30

31 int linearSearch(const int array[], int key, int low, int high)

32 {

33 if (arrayl[low] == key)

34 return low;

35 else if (low == high)

36 return -1;

37 else

38 return linearSearch(array, key, low + 1, high);
39 3

Enter the integer search key: 22
Found value in element 11

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 165

4.34 (Binary Search) Modify the program of Fig. 4.20 to use a recursive function binarySearch to perform the binary search
of the array. The function should receive an integer array and the starting subscript and ending subscript as arguments. If the search
key is found, return the array subscript; otherwise, return —1.

// Exercise 4.34 Solution
#include <iostream>

using std::cout;
using std::endl;

using std::cin;

#include <iomanip>

NV OONOGBAWN—

10 using std::setw;
12 const int SIZE = 15;
14 int binarySearch(const int [], int, int, int);

15 woid printRow(const int [], int, int, int);
16 +void printHeader(void);

17

18 int main()

19 {

20 int a[SIZE], key, result;

21

22 for (int i = 0; i < SIZE; ++i)

23 a[11 =2 * i;

24

25 cout << "Enter a number between 0 and 28: ";
26 cin >> key;

27

28 printHeader();

29 result = binarySearch(a, key, 0, SIZE - 1);
30

31 if (result != -1)

32 cout << '\n' << key << " found in array element " << result << endl;
33 else

34 cout << '\n' << key << " not found" << endl;
35

36 return 0;

37 3

38

39 int binarySearch(const int b[], int searchKey, int low, int high)
40 {

41 int middle;

42

43 if (low <= high) {

44 middle = (low + high) / 2;

45 printRow(b, low, middle, high);

46

47 if (searchKey == b[middle])

48 return middle;

49 else if (searchKey < b[middle])

50 return binarySearch(b, searchKey, low, middle - 1);
51 else

52 return binarySearch(b, searchKey, middle + 1, high);
53 }

54

55 return -1; // searchKey not found

56 1}

57

58 // Print a header for the output

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

166 Arrays Solutions Chapter 4
59 wvoid printHeader(void)

60 {

61 cout << "Subscripts:\n";

62

63 for (int i = 0; i < SIZE; ++i)

64 cout << setw(3) << i << ' ';

65

66 cout << '\n';

67

68 for (int k = 1; k <= 4 * SIZE; ++k)

69 cout << '-';

70

71 cout << '\n';

72 3}

73

74 // print one row of output showing the current

75 // part of the array being processed.

76 void printRow(const int b[], int low, int mid, int high)
77 |

78 for (int i = 0; i < SIZE; ++i)

79 if (i < low || i > high)

80 cout << " ",

81 else if (i == mid)

82 cout << setw(3) << b[i] << '"*'; // mark middle value
83 else

84 cout << setw(3) << b[i] << ' ';

85

86 cout << '\n';

87

Enter a number between 0 and 28: 17
Subscripts:

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 4 6 8 10 12 14* 16 18 20 22 24 26 28
16 18 20 22* 24 26 28
16 18* 20
16*

17 not found

4.35
4.36

(Eight Queens) Modify the Eight Queens program you created in Exercise 4.26 to solve the problem recursively.

(Print an array) Write a recursive function printArray that takes an array and the size of the array as arguments and

returns nothing. The function should stop processing and return when it receives an array of size zero.

NV OONOGBAWN—

// Exercise 4.36 Solution
#include <iostream>

using std::cout;
using std::endl;

#include <iomanip>
using std::setw;

#include <cstdlib>
#include <ctime>

void printArray(const int [], int, int);

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 167
15

16 int main()

17

18 const int SIZE = 10, MAXNUMBER = 500;

19 int array[SIZE];

20

21 srand(time(0));

22

23 for (int loop = 0; loop < SIZE; ++loop)
24 array[loop] = 1 + rand() % MAXNUMBER;
25

26 cout << "Array values printed in main:\n";
27

28 for (int j = 0; j < SIZE; ++3j)

29 cout << setw(5) << arrayl j 1:

30

31 cout << "\n\nArray values printed in printArray:\n";
32 printArray(array, 0, SIZE - 1);

33 cout << endl;

34

35 return 0;

36 13}

37

38 void printArray(const int array[], int low, int high)
39 {

40 cout << setw(5) << array[low 1;

41

42 if (low == high)

43 return;

44 else

45 printArray(array, low + 1, high);

46)

Array values printed in main:
432 14 59 484 45 388 355 384 425 448

Array values printed in printArray:
432 14 59 484 45 388 355 384 425 448

4.37 (Print a string backwards) Write a recursive function stringReversethat takes a character array containing a string as
an argument, prints the string backwards and returns nothing. The function should stop processing and return when the terminating

null character is encountered.

1 // Exercise 4.37 Solution

2 #include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 void stringReverse(const char []);

8

9 int main()

10 ¢

11 const int SIZE = 30;

12 char strArray[SIZE] = "Print this string backwards."
13

14 for (int loop = 0; loop < SIZE; ++loop)
15 cout << strArray[loop 1;

16

.
I

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

168 Arrays Solutions Chapter 4

17 cout << '\n';

18 stringReverse(strArray);

19 cout << endl;

20

21 return 0;

22

23

24 ~woid stringReverse(const char strArray[])
25 {

26 if (strArray[0 1 == '\0')

27 return;

28

29 stringReverse(&strArray[1]);
30 cout << strArray[0 1;

31 1}

Print this string backwards.
.sdrawkcab gnirts siht tnirP

4.38 (Find the minimum value in an array) Write a recursive function recursiveMinimum that takes an integer array and
the array size as arguments and returns the smallest element of the array. The function should stop processing and return when it
receives an array of 1 element.

1 // Exercise 4.38 Solution
2 $#include <iostream>

3

4 using std::cout;

5 using std::endl;

6

7 #include <iomanip>

8

9 using std::setw;

10

11 #include <cstdlib>
12 #include <ctime>

14 const int MAXRANGE = 1000;
15 int recursiveMinimum(comnst int [], int, int);

16

17 int main()

18 {

19 const int SIZE = 10;

20 int array[SIZE], smallest;

21

22 srand(time(0));

23

24 for (int loop = 0; loop < SIZE; ++loop)
25 array[loop] = 1 + rand() % MAXRANGE;
26

27 cout << "Array members are:\n";

28 for (int k = 0; k < SIZE; ++k)

29 cout << setw(5) << arrayl k 1;

30

31 cout << '\n';

32 smallest = recursiveMinimum(array, 0, SIZE - 1);
33 cout << "\nSmallest element is: " << smallest << endl;
34

35 return 0;

36 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 4 Arrays Solutions 169

§§ int recursiveMinimum(const int array[], int low, int high)

j? ‘ static int smallest = MAXRANGE;

42 if (array[low] < smallest)

43 smallest = array[low];

ig return low == high ? smallest : recursiveMinimum(array, low + 1, high);
46 3

Array members are:
7 84 951 884 404 167 905 93 744 115
Smallest element is: 7

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Pointers
and Strings
Solutions

Solutions

5.8

5.9

State whether the following are true or false. If false, explain why.

a) Two pointers that point to different arrays cannot be compared meaningfully.

ANS: True.

b) Because the name of an array is a pointer to the first element of the array, array names may be manipulated in precisely
the same manner as pointers.

ANS: False. An array name cannot be used to refer to another location in memory.

Answer each of the following. Assume that unsigned integers are stored in 2 bytes and that the starting address of the array

is at location 1002500 in memory.

a) Declare an array of type unsigned int called values with 5 elements, and initialize the elements to the even in-
tegers from 2 to 10. Assume that the symbolic constant SIZE has been defined as 5.
ANS: unsigned values|[SIZE] = { 2, 4, 6, 8, 10 };
b) Declare a pointer vPtr that points to an object of type unsigned int
ANS: unsigned *vPtr;
c) Print the elements of array values using array subscript notation. Use a for structure and assume integer control
variable i has been declared.
ANS:
for (i =0; i < SIZE; ++i)
cout << setw(4) << values[i];
d) Give two separate statements that assign the starting address of array values to pointer variable vPtr.
ANS: vPtr = values; andvPtr = &values[0];
e) Print the elements of array values using pointer/offset notation.
ANS:
for (i =0; i < SIZE; ++i)
cout << setw(4) << *(vPtr + i);
f) Print the elements of array values using pointer/offset notation with the array name as the pointer.
ANS:
for (1 =0; 1 < SIZE; ++i)
cout << setw(4) << *(values + i);
g) Print the elements of array values by subscripting the pointer to the array.
ANS:
for (i = 0; i < SIZE; ++i)
cout << setw(4) << vPtr[i 1;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 171

5.10

h) Refer to the fifth element of values using array subscript notation pointer/offset notation with the array name as the
pointer, pointer subscript notation, and pointer/offset notation.

ANS: values[4],*(values + 4),vPtr[4]1,*(vPtr + 4)

i) What address is referenced by vPtr + 3? What value is stored at that location?

ANS: The address of the location pertaining to values[3 1 (i.e., 1002506). 8.

j) Assuming vPtr points to values[4 1, what address is referenced by vPtr -= 4? What value is stored at that lo-
cation?

ANS: The address of where values begins in memory (i.e., 1002500). 2.

For each of the following, write a single statement that performs the indicated task. Assume that long integer variables

valuel and value2 have been declared and that valuel has been initialized to 200000.

5.12

a) Declare the variable 1Ptr to be a pointer to an object of type long.
ANS: long *1Ptr;

b) Assign the address of variable valuel to pointer variable 1Ptr.
ANS: 1pPtr = &valuel;

c) Print the value of the object pointed to by 1Ptr.

ANS: cout << *1Ptr << ’\n’;

d) Assign the value of the object pointed to by 1Ptr to variable value2.
ANS: value2 = *1Ptr;

e) Print the value of value2.

ANS: cout << value2 << ’\n’;

f) Print the address of valuel.

ANS: cout << &valuel << ’\n’;

g) Print the address stored in 1Ptr. Is the value printed the same as the address of valuel?
ANS: cout << 1Ptr << ’\n’; yes.

Do each of the following.
a) Write the function header for function zero that takes a long integer array parameter bigIntegers and does not
return a value.
ANS: void zero(long bigIntegers[]) or
void zero(long *bigIntegers)
b) Write the function prototype for the function in part (a).
ANS: void zero(long []1); orvoid zero(long *);
¢) Write the function header for functionadd1AndSum that takes an integer array parameter oneTooSmall and returns
an integer.
ANS: int addlAndsum(int oneTooSmall[]) or
int addlAndsum(int *oneTooSmall)
d) Write the function prototype for the function described in part(c).
ANS: int addlAndsum(int []); orint addlAndsum(int *);

Note: Exercises 5.12 through 5.15 are reasonably challenging. Once you have done these prob-
lems, you ought to be able to implement most popular card games easily.

Modify the program in Fig. 5.24 so that the card dealing function deals a five-card poker hand. Then write functions to

accomplish each of the following:

a) Determine if the hand contains a pair.

b) Determine if the hand contains two pairs.

¢) Determine if the hand contains three of a kind (e.g., three jacks).

d) Determine if the hand contains four of a kind (e.g., four aces).

e) Determine if the hand contains a flush (i.e., all five cards of the same suit).

f) Determine if the hand contains a straight (i.e., five cards of consecutive face values).

ONOOA WN—

// Exercise 5.12 Solution
#include <iostream>

using std::cout;
using std::ios;

#include <iomanip>

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

172 Pointers and Strings Solutions

Chapter 5

9 using std::setw;

10 using std::setprecision;

11 using std::setiosflags;

12 using std::resetiosflags;

13

14 #include <cstdlib>

15 #include <ctime>

16

17 wvoid shuffle(int [1[13]);

18 wvoid deal(comnst int [1[13], const char *[], const char *[], int [I1[2]);
19 wvoid pair(const int [][13], const int [][2], const char *[]);

20 void threeOfKind(const int [1[13], comnst int [][2], const char *[]);
21 wvoid fourOfKind(const int [][13 1, const int []I[2 1, const char *[]);
22 wvoid flushHand(const int []1[13], const int [][2], const char *[]);
23 wvoid straightHand(const int [][13], const int [][2], comnst char *[],
24 const char *[]);

25

26 int main()

27 {

28 const char *suit[] = { "Hearts", "Diamonds", "Clubs", "Spades" },

29 *face[] = { "Ace", "Deuce", "Three", "Four", "Five", "Six",
30 "Seven", "Eight", "Nine", "Ten", "Jack", "Queen",
31 "King" };

32 int deck[4][13 1 = { 0 }, hand[5 1[2 1 = { 0 };

33

34 srand(time(0));

35

36 shuffle(deck);

37 deal(deck, face, suit, hand);

38 pair(deck, hand, face);

39 threeOfKind(deck, hand, face);

40 fourOfKind(deck, hand, face);

41 flushHand(deck, hand, suit);

42 straightHand(deck, hand, suit, face);

43

44 return 0;

45 }

46

47 void shuffle(int wbDeck[][13])

48 {

49 int row, column;

50

51 for (int card = 1; card <= 52; ++card) {

52 do {

53 row = rand() % 4;

54 column = rand() % 13;

55 } while (wbheck[row][column] != 0);

56

57 wDeck[row][column] = card;

58 }

59 1}

60

61 // deal a five card poker hand

62 void deal(const int wDeck[][13], const char *wFacell,

63 const char *wSuit[], int wHand[]l[2])

64

65 int r = 0;

66

67 cout << "The hand is:\n";

68

69 for (int card = 1; card < 6; ++card)

70 for (int row = 0; row <= 3; ++row)

71 for (int column = 0; column <= 12; ++column)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 173
72 if (wDeck[row][column] == card) {

73 wHand[r 1[0 1 = row;

74 wHand[r 1[1] = column;

75 cout << setw(5) << wFace[column]

76 << " of " << setw(8) << setiosflags(ios::left)
77 << wSuit[row] << (card % 2 == 0 ? '\n' : '\t')
78 << resetiosflags(ios::left);

79 ++Tr;

80 }

81

82 cout << '\n';

83 1}

84

85 // pair determines if the hand contains one or two pair

86 wvoid pair(const int wDeck[][13], const int wHand[]l[2 1],

87 const char *wFacel])

88 {

89 int counter[13] = { 0 };

90

91 for (int r = 0; r < 5; ++r)

92 ++counter[wHand[r 1[1 1 1;

93

94 cout << '\n';

95

96 for (int p = 0; p < 13; ++p)

97 if (counter[p] == 2)

98 cout << "The hand contains a pair of " << wFace[p] << "'s.\n";
99 3

100

101 void threeOfKind(const int wDeck[][13], const int wHand[l[2 1,
102 const char *wFacel[])

103 ¢

104 int counter[13 1 = { 0 };

105

106 for (int r = 0; r < 5; ++r)

107 ++counter[wHand[r 1[1 1 1;

108

109 for (int t = 0; t < 13; t++)

110 if (counter[t] == 3)

111 cout << "The hand contains three " << wFacel[t] << "'s.\n";
112 3

113

114 wvoid fourOfKind(const int wbDeck[][13], const int wHand[l[2 1,
115 const char *wFacel[])

116 (

117 int counter[13] = { 0 };

118

119 for (int r = 0; r < 5; ++r)

120 ++counter[wHand[r 1[1 1 1;

121

122 for (int k = 0; k < 13; ++k)

123 if (counter[k] == 4)

124 cout << "The hand contains four " << wFacel[k] << "'s.\n";
125 3}

126

127 void flushHand(const int wDeck[][13], const int wHand[]l[2 1,
128 const char *wSuit[])

129 {

130 int count[4 1 = { 0 };

131

132 for (int r = 0; r < 5; ++r)

133 ++count[wHand[r 1[0 1 1;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

174 Pointers and Strings Solutions Chapter 5

134

135 for (int £ = 0; £ < 4; ++f)

136 if (count[£] == 5)

137 cout << "The hand contains a flush of " << wSuit[£] << "'s.\n";
138 3

139

140 void straightHand(const int wDeck[][13], const int wHand[l[2 1,
141 const char *wSuit[], const char *wFace[])
142 ¢

143 int s[51 = { 0 }, temp;

144

145 // copy column locations to sort

146 for (int r = 0; r < 5; ++r)

147 s[r] =wHand[r 1[1 1;

148

149 // bubble sort column locations

150 for (int pass = 1; pass < 5; ++pass)

151 for (int comp = 0; comp < 4; ++comp)

152 if (s[comp] > s[comp + 1 1) {

153 temp = s[comp];

154 s[comp] = s[comp + 1];

155 s[comp + 1] = temp;

156 }

157

158 // check if sorted columns are a straight

159 if (s[4] -1 ==s[3] & s[3] -1==1s5[21

160 & s[2] - 1 ==s[1] & s[1] - 1 ==s[01) {
161 cout << "The hand contains a straight consisting of\n";
162

163 for (int j = 0; j < 5; ++j)

164 cout << wFace[wHand[j 1[1 1] << " of " << wSuit[wHand[j 1[0 1 1
165 << "\n';

166 }

167 1}

The hand is:
Ace of Diamonds Jack of Clubs
Ten of Clubs Queen of Clubs
Deuce of Hearts

5.13 Use the functions developed in Exercise 5.12 to write a program that deals two five-card poker hands, evaluates each hand,
and determines which is the better hand.

5.14 Modify the program developed in Exercise 5.13 so that it can simulate the dealer. The dealer’s five-card hand is dealt “face
down” so the player cannot see it. The program should then evaluate the dealer’s hand, and, based on the quality of the hand, the
dealer should draw one, two or three more cards to replace the corresponding number of unneeded cards in the original hand. The
program should then reevaluate the dealer’s hand. (Caution: This is a difficult problem!)

5.15 Modify the program developed in Exercise 5.14 so that it can handle the dealer’s hand automatically, but the player is al-
lowed to decide which cards of the player’s hand to replace. The program should then evaluate both hands and determine who wins.
Now use this new program to play 20 games against the computer. Who wins more games: you or the computer? Have one of your
friends play 20 games against the computer. Who wins more games? Based on the results of these games, make appropriate modi-
fications to refine your poker-playing program. (This, too, is a difficult problem.) Play 20 more games. Does your modified program
play a better game?

5.16 In the card-shuffling and dealing program of Fig. 5.24, we intentionally used an inefficient shuffling algorithm that intro-
duced the possibility of indefinite postponement. In this problem, you will create a high-performance shuffling algorithm that a voids
indefinite postponement.

Modify Fig. 5.24 as follows. Initialize the deck array as shown in Fig. 5.35. Modify the shuf fle function to loop row by
row and column by column through the array touching every element once. Each element should be swapped with a randomly

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 175

selected element of the array. Print the resulting array to determine if the deck is satisfactorily shuffled (as in Fig. 5.36, for example).
You may want your program to call the shuff1le function several times to ensure a satisfactory shuffle.

Note that although the approach in this problem improves the shuffling algorithm, the dealing algorithm still requires search-
ing the deck array for card 1, then card 2, then card 3, and so on. Worse yet, even after the dealing algorithm locates and deals the

card, the algorithm continues searching through the remainder of the deck. Modify the program of Fig. 5.24 so that once a card is
dealt, no further attempts are made to match that card number, and the program immediately proceeds with dealing the next card.

Unshuffled deck array

1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 14 15 16 17 18 19 20 21 22 23 24 25 26
2 27 28 29 30 31 32 33 34 35 36 37 38 39
3 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 5.35 Unshuffled deck array.

Sample shuffled deck array

0 1 2 3 4 5 6 7 8 9 10 11 12
0 19 40 27 25 36 46 10 34 35 41 18 2 44
1 13 28 14 16 21 30 8 11 31 17 24 7 1
2 12 33 15 42 43 23 45 3 29 32 4 47 26
3 50 38 52 39 48 51 9 5 37 49 22 6 20

Fig. 5.36 Sample shuffled deck array.

1 // Exercise 5.16 Solution
2 $#include <iostream>
3
4 using std::cout;
5 using std::ios;
6
7
8 #include <iomanip>
9 using std::setw;

10 using std::setprecision;
11 using std::setiosflags;
12 using std::resetiosflags;

14 #include <cstdlib>
15 #$#include <ctime>

17 wvoid shuffle(int [I1[13]);
18 void deal(const int [1[13], const char *[], const char *[]);

20 int main()

21

22 int card = 1, deck[4][13] = { 0 };

23 const char *suit[4] = { "Hearts", "Diamonds", "Clubs", "Spades" };

24 const char *face[13] = { "Ace", "Deuce", "Three", "Four", "Five", "Six",

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

176 Pointers and Strings Solutions Chapter 5
25 "Seven", "Eight", "Nine", "Ten", "Jack", "Queen",
26 "King" };

27
28 srand(time(0));
29

30 // initialize deck
31 for (int row = 0; row <= 3; ++row)

32 for (int column = 0; column <= 12; ++column)

33 deck[row][column] = card++;

34
35 shuffle(deck);

36 deal(deck, face, suit);

37
38 return 0;

39 1}

40
41 wvoid shuffle(int workDeck[]l[13 1)

42
43 int temp, randRow, randColumn;

44
45 for (int row = 0; row <= 3; ++row)

46 for (int column = 0; column <= 12; ++column) {

47 randRow = rand() % 4;

48 randColumn = rand() % 13;

49 temp = workDeck[row][column];

50 workDeck[row][column] = workDeck[randRow][randColumn 1];
51 workDeck[randRow][randColumn] = temp;

52 }

53 1}

54

55 wvoid deal(const int workDeck2[][13], const char *workFacel[l,
56 const char *worksuit[])

57 {

58 for (int card = 1; card <= 52; ++card)

59 for (int row = 0; row <= 3; ++row)

60 for (int column = 0; column <= 12; ++column)

61 if (workDeck2[row][column] == card) {

62 cout << setw(8) << workFace[column] << " of "
63 << setiosflags(ios::left) << setw(8)

64 << workSuit[row]

65 << ((card % 2 == 0 ? '\n' : '"\t')

66 << resetiosflags(ios::left);

67 break;

68 }

69 1}

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 177

King of Hearts King of Diamonds
Eight of Spades Four of Clubs
Five of Clubs Queen of Hearts
Eight of Hearts Nine of Diamonds
Ace of Clubs Deuce of Clubs
Six of Diamonds Five of Hearts
Seven of Hearts Nine of Hearts
Six of Spades Jack of Diamonds
Five of Spades Queen of Diamonds
King of Clubs King of Spades
Five of Diamonds Seven of Diamonds
Eight of Diamonds Four of Hearts
Four of Spades Ten of Hearts
Three of Spades Three of Diamonds
Ten of Spades Four of Diamonds
Ten of Diamonds Deuce of Hearts
Ace of Diamonds Six of Hearts
Nine of Clubs Nine of Spades
Deuce of Spades Eight of Clubs
Queen of Spades Six of Clubs
Seven of Clubs Jack of Clubs
Ace of Hearts Three of Clubs
Deuce of Diamonds Queen of Clubs
Seven of Spades Ace of Spades
Jack of Hearts Jack of Spades
Ten of Clubs Three of Hearts

5.17 (Simulation: The Tortoise and the Hare) In this problem you will re-create the classic race of the tortoise and the hare. You
will use random-number generation to develop a simulation of this memorable event.

Our contenders begin the race at “square 1” of 70 squares. Each square represents a possible position along the race course.
The finish line is at square 70. The first contender to reach or pass square 70 is rewarded with a pail of fresh carrots and lettuce.
The course weaves its way up the side of a slippery mountain, so occasionally the contenders lose ground.

There is a clock that ticks once per second. With each tick of the clock, your program should adjust the position of the animals
according to the following rules:

Percentage of the

Animal Move type time Actual move

Tortoise Fast plod 50% 3 squares to the right
Slip 20% 6 squares to the left
Slow plod 30% 1 square to the right

Hare Sleep 20% No move at all
Big hop 20% 9 squares to the right
Big slip 10% 12 squares to the left
Small hop 30% 1 square to the right
Small slip 20% 2 squares to the left

Use variables to keep track of the positions of the animals (i.e., position numbers are 1-70). Start each animal at position 1
(i.e., the “starting gate”). If an animal slips left before square 1, move the animal back to square 1.

Generate the percentages in the preceding table by producing a random integer i in the range 1 £ i £ 10. For the tortoise, per-
form a “fast plod” when 1 £i £ 5, a “slip” when 6 £ i £7 or a “slow plod” when 8 £ i £ 10. Use a similar technique to move the
hare.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

178 Pointers and Strings Solutions Chapter 5

Begin the race by printing

BANG !!1!1!!
AND THEY'RE OFF !!1!1!

For each tick of the clock (i.e., each repetition of a loop), print a 70-position line showing the letter T in the tortoise’s position
and the letter H in the hare’s position. Occasionally, the contenders land on the same square. In this case, the tortoise bites the hare,
and your program should print OUCH! ! ! beginning at that position. All print positions other than the T, the H or theOUCH! ! ! (in
case of a tie) should be blank.

After printing each line, test if either animal has reached or passed square 70. If so, print the winner and terminate the simula-
tion. If the tortoise wins, print TORTOISEWINS! ! ! YAY! !! If the hare wins, print Hare wins. Yuch. If both animals win
on the same clock tick, you may want to favor the turtle (the “underdog”), or you may want to print It 's a tie. If neither animal
wins, perform the loop again to simulate the next tick of the clock. When you are ready to run your program, assemble a group of
fans to watch the race. You’ll be amazed how involved the audience gets!

// Exercise 5.17 Solution
#include <iostream>

using std::cout;
using std::endl;

#include <cstdlib>
#include <ctime>

NVOONOOTAWN —

10 #include <iomanip>

12 using std::setw;

14 const int RACE_END = 70;

16 void moveTortoise(int * const);
17 wvoid moveHare(int * const);

18 wvoid printCurrentPositions(const int * const, const int * const);

20 int main()

21 {

22 int tortoise = 1, hare = 1, timer = 0;

23

24 srand(time(0));

25

26 cout << "ON YOUR MARK, GET SET\nBANG INERE
27 << "\nAND THEY'RE OFF 11ri\n";

28

29 while (tortoise != RACE END && hare != RACE_END) {
30 moveTortoise(&tortoise);

31 moveHare(&hare);

32 printCurrentPositions(&tortoise, &hare);

33 ++timer;

34 }

35

36 if (tortoise >= hare)

37 cout << "\nTORTOISE WINS!!! YAY!!!\n";

38 else

39 cout << "Hare wins. Yuch.\n";

40

41 cout << "TIME ELAPSED = " << timer << " seconds" << endl;
42

43 return 0;

44

45

46 void moveTortoise(int * const turtlePtr)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions

179

47 {

48 int x = 1 + rand() % 10;

49

50 if ((x >= 1 && x <=5) // fast plod
51 *turtlePtr += 3;

52 else if (x == 6 || x ==7) // slip

53 *turtlePtr -= 6;

54 else // slow plod
55 ++(*turtlePtr);

56

57 if (*turtlePtr < 1)

58 *turtlePtr = 1;

59 else if (*turtlePtr > RACE_END)

60 *turtlePtr = RACE_END;

61

62

63 +void moveHare(int * const rabbitPtr)

64 {

65 int vy = 1 + rand() % 10;

66

67 if (y == [| ¥ == 4) // big hop
68 *rabbitPtr += 9;

69 else if (y ==) // big slip
70 *rabbitPtr -= 12;

71 else if (y >= 6 & y <= 8) // small hop
72 ++(*rabbitPtr);

73 else if (y > 8) // small slip
74 *rabbitPtr -= 2;

75

76 if (*rabbitPtr < 1)

77 *rabbitPtr = 1;

78 else if (*rabbitPtr > RACE_END)

79 *rabbitPtr = RACE_END;

80

81

82 woid printCurrentPositions(const int * const snapperPtr,
83 const int * const bunnyPtr)
84 ¢

85 if (*bunnyPtr == *snapperPtr)

86 cout << setw(*bunnyPtr) << "OUCH!!!";
87 else if (*bunnyPtr < *snapperPtr)

88 cout << setw(*bunnyPtr) << 'H'

89 << setw(*snapperPtr - *bunnyPtr) << 'T';
90 else

921 cout << setw(*snapperPtr) << 'T'

92 << setw(*bunnyPtr - *snapperPtr) << 'H';
93

94 cout << '\n';

95 3}

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

180 Pointers and Strings Solutions Chapter 5

ON YOUR MARK, GET SET

BANG 1t
AND THEY'RE OFF 1t
H T
T H
T H
T H
T H
T H
T H
T H
T H
T H
T H
T H
T H
T H
T H
T H
T H
T H
T H
T H
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T
H T

TORTOISE WINS!
TIME ELAPSED =

11 Yay!!!

1
59 seconds

Chapter 5 Pointers and Strings Solutions 181

SPECIAL SECTION: BUILDING YOUR OWN COMPUTER

In the next several problems, we take a temporary diversion away from the world of high-level-language programming. We “peel
open” a computer and look at its internal structure. We introduce machine-language programming and write several machine-lan-
guage programs. To make this an especially valuable experience, we then build a computer (through the technique of software-
based simulation) on which you can execute your machine-language programs!

5.18 (Machine-Language Programming) Let us create a computer we will call the Simpletron. As its name implies, it is a simple
machine, but, as we will soon see, a powerful one as well. The Simpletron runs programs written in the only language it directly
understands; that is, Simpletron Machine Language, or SML for short.

The Simpletron contains an accumulator—a “special register” in which information is put before the Simpletron uses that
information in calculations or examines it in various ways. All information in the Simpletron is handled in terms of words. A word
is a signed four-digit decimal number, such as +3364, -1293,+0007, -0001, etc. The Simpletron is equipped with a 100-word
memory, and these words are referenced by their location numbers 00, 01, ..., 99.

Before running an SML program, we must load, or place, the program into memory. The first instruction (or statement) of
every SML program is always placed in location 00. The simulator will start executing at this location.

Each instruction written in SML occupies one word of the Simpletron’s memory. (Thus, instructions are signed four-digit dec-
imal numbers.) We shall assume that the sign of an SML instruction is always plus, but the sign of a data word may be either plus
or minus. Each location in the Simpletron’s memory may contain an instruction, a data value used by a program or an unused (and

hence undefined) area of memory. The first two digits of each SML instruction are the operation code that specifies the operation
to be performed. SML operation codes are shown in Fig. 5.37.

Operation code Meaning

Input/output operations:

const int READ = 10 Read a word from the keyboard into a specific
location in memory.

const int WRITE = 11; Write a word from a specific location in memory
to the screen.

Load and store operations:

const int LOAD = 20; Load a word from a specific location in memory
into the accumulator.

const int STORE = 21; Store a word from the accumulator into a spe-
cific location in memory.

Arithmetic operations:

const int ADD = 30; Add a word from a specific location in memory
to the word in the accumulator (leave result in
accumulator).

const int SUBTRACT

31; Subtract a word from a specific location in mem-
ory from the word in the accumulator (leave
result in accumulator).

const int DIVIDE = 32; Divide a word from a specific location in mem-

ory into the word in the accumulator (leave result

in accumulator).

const int MULTIPLY = 33; Multiply a word from a specific location in
memory by the word in the accumulator (leave

result in accumulator).

Transfer of control operations:

const int BRANCH = 40; Branch to a specific location in memory.

Fig. 5.37 Simpletron Machine Language (SML) operation codes (part 1 of 2).

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

182

Pointers and Strings Solutions

Operation code

const int BRANCHNEG = 41;

const int BRANCHZERO = 42;

const int HALT = 43;

Chapter 5

Meaning

Branch to a specific location in memory if the
accumulator is negative.

Branch to a specific location in memory if the
accumulator is zero.

Halt—the program has completed its task.

Fig. 5.37

Simpletron Machine Language (SML) operation codes (part 2 of 2).

The last two digits of an SML instruction are the operand—the address of the memory location containing the word to which
the operation applies.

Now let us consider several simple SML programs. The first SML program (Example 1) reads two numbers from the key-
board and computes and prints their sum. The instruction +1007 reads the first number from the keyboard and places it into loca-
tion 07 (which has been initialized to zero). Then instruction +1008 reads the next number into location 08. The loadinstruction,
+2007, puts (copies) the first number into the accumulator, and the add instruction, +3008, adds the second number to the num-
ber in the accumulator. All SML arithmetic instructions leave their results in the accumulator. The store instruction, +2109, places
(copies) the result back into memory location 09 from which the write instruction, +1109, takes the number and prints it (as a
signed four-digit decimal number). The halt instruction, +4300, terminates execution.

Example 1

Location

00
01
02
03
04
05
06
07
08
09

+1007
+1008
+2007
+3008
+2109
+1109
+4300
+0000
+0000
+0000

Number

Instruction

(Read a)
(Read B)
(Load Aa)
(Add B)
(Store C)
(Write C)
(Halt)
(Variable A)
(Variable B)
(Result C)

The SML program in Example 2 reads two numbers from the keyboard and determines and prints the larger value. Note the
use of the instruction +4107 as a conditional transfer of control, much the same as C++’s if statement.

Example 2

Location

00
01
02
03
04
05
06
07

+1009
+1010
+2009
+3110
+4107
+1109
+4300
+1110

Number

Instruction

(Read A)

(Read B)

(Load Aa)

(Subtract B)

(Branch negative to 07)
(Write A)

(Halt)

(Write B)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 183

Example 2

Location Number Instruction

08 +4300 (Halt)

09 +0000 (Variable A)
10 +0000 (Variable B)

Now write SML programs to accomplish each of the following tasks.
a) Use a sentinel-controlled loop to read positive numbers and compute and print their sum. Terminate input when a neg-
ative number is entered.
b) Use a counter-controlled loop to read seven numbers, some positive and some negative, and compute and print their
average.
¢) Read a series of numbers and determine and print the largest number. The first number read indicates how many num-
bers should be processed.

5.19 (A Computer Simulator) It may at first seem outrageous, but in this problem, you are going to build your own computer.
No, you will not be soldering components together. Rather, you will use the powerful technique of software-based simulation to
create a software model of the Simpletron. You will not be disappointed. Your Simpletron simulator will turn the computer you are
using into a Simpletron, and you will actually be able to run, test and debug the SML programs you wrote in Exercise 5.18.

When you run your Simpletron simulator, it should begin by printing
*** Welcome to Simpletron! ***

*** Please enter your program one instruction ***
*** (or data word) at a time. I will type the ***
***]Jocation number and a question mark (?). ***
*** You then type the word for that location. ***
*** Type the sentinel -99999 to stop entering ***
*** your program. ***

Simulate the memory of the Simpletron with a single-subscripted array memoxry that has 100 elements. Now assume that the
simulator is running, and let us examine the dialog as we enter the program of Example 2 of Exercise 5.18:

00 ? +1009
01 ? +1010
02 ? +2009
03 ? +3110
04 ? +4107
05 ? +1109
06 ? +4300
07 ? +1110
08 ? +4300
09 ? +0000
10 ? +0000
11 ? -99999

%* Program loading completed *
*** Program execution begins ***

The SML program has now been placed (or loaded) in array memory. Now the Simpletron executes your SML program. Exe-
cution begins with the instruction in location 00 and, like C++, continues sequentially, unless directed to some other part of the
program by a transfer of control.

Use the variable accumulator to represent the accumulator register. Use the variable counter to keep track of the loca-
tion in memory that contains the instruction being performed. Use variable operationCode to indicate the operation currently
being performed (i.e., the left two digits of the instruction word). Use variable operand to indicate the memory location on which
the current instruction operates. Thus, operand is the rightmost two digits of the instruction currently being performed. Do not
execute instructions directly from memory. Rather, transfer the next instruction to be performed from memory to a variable called
instructionRegister. Then “pick off” the left two digits and place them in operationCode, and “pick off” the right two
digits and place them in operand. When Simpletron begins execution, the special registers are all initialized to zero.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

184 Pointers and Strings Solutions Chapter 5

Now let us “walk through” the execution of the first SML instruction, +1009 in memory location 00. This is called an
instruction execution cycle.

The countertells us the location of the next instruction to be performed. We fetch the contents of that location from mem-
ory by using the C++ statement

instructionRegister = memory[counter];
The operation code and operand are extracted from the instruction register by the statements

operationCode = instructionRegister / 100;
operand = instructionRegister % 100;

Now the Simpletron must determine that the operation code is actually a read (versus awrite, aload, etc.). A switch differ-
entiates among the twelve operations of SML.

In the switch structure, the behavior of various SML instructions is simulated as follows (we leave the others to the reader):

read: cin >> memory[operand];

load: accumulator = memory[operand];

add: accumulator += memory[operand];
branch: We will discuss the branch instructions shortly.
halt: This instruction prints the message

*** gimpletron execution terminated ***

It then prints the name and contents of each register, as well as the complete contents of memory. Such a printout is often called a
computer dump (and, no, a computer dump is not a place where old computers go). To help you program your dump function, a
sample dump format is shown in Fig. 5.38. Note that a dump after executing a Simpletron program would show the actual values of
instructions and data values at the moment execution terminated.

Let us proceed with the execution of our program’s first instruction—+1009 in location 00. As we have indicated, the
switch statement simulates this by performing the C++ statement

cin >> memory[operand 1];
A question mark (?) should be displayed on the screen before the cin is executed to prompt the user for input. The Sim-

pletron waits for the user to type a value and then press the Return key. The value is then read into location 09.

At this point, simulation of the first instruction is completed. All that remains is to prepare the Simpletron to execute the next
instruction. Since the instruction just performed was not a transfer of control, we need merely increment the instruction counter
register as follows:

++counter;

This completes the simulated execution of the first instruction. The entire process (i.e., the instruction execution cycle) begins
anew with the fetch of the next instruction to be executed.

Now let us consider how the branching instructions—the transfers of control—are simulated. All we need to do is adjust the
value in the instruction counter appropriately. Therefore, the unconditional branch instruction (40) is simulated within the
switch as

counter = operand;
The conditional “branch if accumulator is zero” instruction is simulated as

if (accumulator == 0)
counter = operand;

At this point you should implement your Simpletron simulator and run each of the SML programs you wrote in Exercise 5.18.
You may embellish SML with additional features and provide for these in your simulator.

Your simulator should check for various types of errors. During the program loading phase, for example, each number the

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 185

user types into the Simpletron’s memory must be in the range =9999 to +9999. Your simulator should use awhile loop to test
that each number entered is in this range and, if not, keep prompting the user to reenter the number until the user enters a correct
number.

REGISTERS:

accumulator +0000
counter 00
instructionRegister +0000
operationCode 00
operand 00
MEMORY :

0 1 2 3 4 5 6 7 8 9

0 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
10 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
20 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
30 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
40 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
50 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
60 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
70 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
80 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
90 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000

Fig. 5.38 A sample dump.

During the execution phase, your simulator should check for various serious errors, such as attempts to divide by zero,
attempts to execute invalid operation codes, accumulator overflows (i.e., arithmetic operations resulting in values larger than
+9999 or smaller than -9999) and the like. Such serious errors are called fatal errors. When a fatal error is detected, your simu-
lator should print an error message such as

*** Attempt to divide by zero ***
*** Simpletron execution abnormally terminated ***

and should print a full computer dump in the format we have discussed previously. This will help the user locate the error in the
program.

1 // Exercise 5.19 Solution

2 $#include <iostream>

K]

4 using std::cout;

5 using std::endl;

6 wusing std::cin;

7 using std::ios;

8

9 $#include <iomanip>

10

11 using std::setfill;

12 using std::setw;

13 using std::setiosflags;

14 using std::resetiosflags;

15

16 const int SIZE = 100, MAX_WORD = 9999, MIN WORD = -9999;

17 const long SENTINEL = -99999;

18 enum Commands { READ = 10, WRITE, LOAD = 20, STORE, ADD = 30, SUBTRACT,
19 DIVIDE, MULTIPLY, BRANCH = 40, BRANCHNEG, BRANCHZERO, HALT };
20

21 wvoid load(int * const);
22 void execute(int * const, int * const, int * const, int * const,

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

186 Pointers and Strings Solutions Chapter 5

23 int * const, int * const);
24 vwoid dump(const int * const, int, int, int, int, int);
25 bool validWord(int);

26

27 int main()

28 {

29 int memory[SIZE] = { 0 }, accumulator = 0, instructionCounter = 0,
30 opCode = 0, operand = 0, instructionRegister = 0;

31

32 load(memory);

33 execute(memory, &accumulator, &instructionCounter, &instructionRegister,
34 &opCode, &operand);

35 dump (memory, accumulator, instructionCounter, instructionRegister,
36 opCode, operand);

37

38 return 0;

39

40

41 void load(int * const loadMemory)

42 {

43 long instruction;

44 int 1 = 0;

45

46 cout << "kk* Welcome to Simpletron *k*\n"

47 << "*** Please enter your program one instruction ***\n"

48 << "*** (or data word) at a time. I will type the ***\n"

49 << "*** Jocation number and a question mark (?). ***\n"

50 << "*** You then type the word for that location. ***\n"

51 << "*** Pype the sentinel -99999 to stop entering ***\n"

52 << "*** your program. ***\n" << "00 ? ";
53 cin >> instruction;

54

55 while (instruction != SENTINEL) {

56

57 if (!validWword(instruction))

58 cout << "Number out of range. Please enter again.\n";

59 else

60 loadMemory[i++] = instruction;

61

62 // function setfill sets the padding character for unused

63 // field widths.

64 cout << setw(2) << setfill('0') << i << " 2 v,

65 cin >> instruction;

66 }

67 1}

68

69 void execute(int * const memory, int * const acPtr, int * const icPtr,
70 int * const irPtr, int * const opCodePtr, int * const opPtr)
71 {

72 bool fatal = false;

73 int temp;

74 const char *messages[] = { "Accumulator overflow kkkm

75 "Attempt to divide by zero *kknu

76 "Invalid opcode detected dkden 3}

77 *termString = "\n*** Simpletron execution abnormally terminated ***",k
78 *fatalString = "*** FATAL ERROR: ";

79

80 cout << "\n¥****kkkkkkk**START SIMPLETRON EXECUTION************\n\n";
81

82 do {

83 *irPtr = memory[*icPtr 1;

84 *opCodePtr = *irPtr / 100;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 187
85 *opPtr = *irPtr % 100;

86

87 switch (*opCodePtr) {

88 case READ:

89 cout << "Enter an integer: ";

90 cin >> temp;

91

92 while (!validWord(temp)) {

93 cout << "Number out of range. Please enter again: ";
94 cin >> temp;

95 }

96

97 memory[*opPtr] = temp;

98 ++(*icPtr);

99 break;

100 case WRITE:

101 cout << "Contents of " << setw(2) << setfill('0') << *opPtr
102 << ": " << memory[*opPtr] << '\n';
103 ++(*icPtr);

104 break;

105 case LOAD:

106 *acPtr = memory[*opPtr 1;

107 ++(*icPtr);

108 break;

109 case STORE:

110 memory[*opPtr] = *acPtr;

111 ++(*icPtr);

112 break;

113 case ADD:

114 temp = *acPtr + memory[*opPtr 1;

115

116 if (!validWord(temp)) {

117 cout << fatalString << messages[0] << termString << '\n';
118 fatal = true;

119 }

120 else {

121 *acPtr = temp;

122 ++(*icPtr);

123 }

124

125 break;

126 case SUBTRACT:

127 temp = *acPtr - memory[*opPtr 1;

128

129 if (!validwWord(temp)) {

130 cout << fatalString << messages[0] << termString << '\n';
131 fatal = true;

132 }

133 else {

134 *acPtr = temp;

135 ++(*icPtr);

136 }

137

138 break;

139 case DIVIDE:

140 if (memory[*opPtr] == 0) {

141 cout << fatalString << messages[1] << termString << '\n';
142 fatal = true;

143 }

144 else {

145 *acPtr /= memory[*opPtr]:;

146 ++(*icPtr);

147 }

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

188 Pointers and Strings Solutions Chapter 5

148

149 break;

150 case MULTIPLY:

151 temp = *acPtr * memory[*opPtr 1:;

152

153 if (!validWord(temp)) {

154 cout << fatalString << messages[0] << termString << '\n';
155 fatal = true;

156 }

157 else {

158 *acPtr = temp;

159 ++(*icPtr);

160 }

161 break;

162 case BRANCH:

163 *icPtr = *opPtr;

164 break;

165 case BRANCHNEG:

166 *acPtr < 0 ? *icPtr = *opPtr : ++(*icPtr);

167 break;

168 case BRANCHZERO:

169 *acPtr == 0 ? *icPtr = *opPtr : ++(*icPtr);

170 break;

171 case HALT:

172 cout << "*** gimpletron execution terminated ***\n";
173 break;

174 default:

175 cout << fatalString << messages[2] << termString << '\n';
176 fatal = true;

177 break;

178 }

179 } while (*opCodePtr != HALT && !fatal);

180

]8] cout << Il\n*************END SIMPLETRON ExEcUTION*************\nll;
182 3

183

184 void dump(const int * const memory, int accumulator, int instructionCounter,
185 int instructionRegister, int operationCode, int operand)
186 {

187 void output(const char * const, int, int, bool); // prototype
188

189 cout << "\nREGISTERS:\n";

190 output ("accumulator", 5, accumulator, true);

191 output ("instructionCounter", 2, instructionCounter, false);
192 output ("instructionRegister", 5, instructionRegister, true);
193 output ("operationCode", 2, operationCode, false);

194 output ("operand", 2, operand, false);

195 cout << "\n\nMEMORY:\n";

196

197 int i = 0;

198 cout << setfill(' ') << setw(3) << ' ';

199

200 // print header

201 for (; i <= 9; ++i)

202 cout << setw(5) << i << ' ';

203

204 for (i = 0; i < SIZE; ++i) {

205 if (i % 10 == 0)

206 cout << '\n' << setw(2) << i << ' ';

207

208 cout << setiosflags(ios::intermnal | ios::showpos)

209 << setw(5) << setfill('0') << memory[i] << ' '
210 << resetiosflags(ios::internal | ios::showpos);

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 189

211 }

212

213 cout << endl;

214 3

215

216 bool validword(int word)

217 {

218 return word >= MIN WORD && word <= MAX WORD;
219 3

220

221 wvoid output(const char * const sPtr, int width, int value, bool sign)

222 {

223 // format of "accumulator", etc.

224 cout << setfill(' ') << setiosflags(ios::left) << setw(20)
225 << sPtr << ' ';

226

227 // is a +/- sign needed?

228 if (sign)

229 cout << setiosflags(ios::showpos | ios::intermal);
230

231 // setup for displaying accumulator value, etc.

232 cout << resetiosflags(ios::left) << setfill('0');

233

234 // determine the field widths and display value

235 if (width == 5)

236 cout << setw(width) << value << '\n';

237 else // width is 2

238 cout << setfill(' ') << setw(3) << ' ' << setw(width)
239 << setfill('0') << value << '\n';

240

241 // disable sign if it was set

242 if (sign)

243 cout << resetiosflags(ios::showpos | ios::internal);
244 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

190 Pointers and Strings Solutions Chapter 5

% % % Welcome to Simpletron * %k
*** Please enter your program one instruction ***
*** (or data word) at a time. I will type the ***
*** Jocation number and a question mark (?). ***
*** You then type the word for that location. ***
*** Type the sentinel -99999 to stop entering ***

**%* your program. *kk
00 ? 1099
01 ? 1098
02 ? 2099
03 ? 3398
04 ? 2150
05 ? 1150
06 ? 1199
07 ? 1198
08 ? 4300
09 ? -99999

*kkK Kk Xk k¥ *¥*START SIMPLETRON EXECUTION* ***% k% k%% k%

Enter an integer: 4

Enter an integer: 9

Contents of 50: 36

Contents of 99: 4

Contents of 98: 9

*** Simpletron execution terminated ***

kkkkkkkkkkk**END SIMPLETRON EXECUTION****%kkxkx*x%kk%x%

REGISTERS:

accumulator +0036
instructionCounter 08
instructionRegister +4300
operationCode 43
operand 00
MEMORY :

0 1 2 3 4 5 6 7 8 9

0 +1099 +1098 +2099 +3398 +2150 +1150 +1199 +1198 +4300 +0000
10 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
20 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
30 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
40 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
50 +0036 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
60 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
70 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
80 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
90 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0009 +0004

MORE POINTER EXERCISES

5.20 Modify the card-shuffling and dealing program of Fig. 5.24 so the shuffling and dealing operations are performed by the
same function (shuf fleAndDeal). The function should contain one nested looping structure that is similar to function shuffle
in Fig. 5.24.

1 // Exercise 5.20 Solution
2 #include <iostream>

3

4 using std::cout;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 191

5 using std::ios;

6

7 #include <iomanip>

8

9 using std::setw;

10 using std::setiosflags;

11 using std::resetiosflags;

12

13 #include <cstdlib>

14 #include <ctime>

15

16 void shuffleAndDeal(int []1[13], const char *[], const char *[]);
17
18
19
20

int main()

{
const char *suit[4] = { "Hearts", "Diamonds", "Clubs", "Spades" };

21 const char *face[13] = { "Ace", "Deuce", "Three", "Four", "Five",
22 "Six", "Seven", "Eight", "Nine", "Ten",
23 "Jack", "Queen", "King" };
24 int deck[4][13 1 = { 0 };
25
26 srand(time(0));
27 shuffleAndDeal (deck, face, suit);
28
29 return 0;
30 3}
31
32 wvoid shuffleAndDeal(int workDeck[][13], const char *workFacell],
33 const char *workSuit[])
34 {
35 int row, column;
36
37 for (int card = 1; card <= 52; ++card) {
38
39 do {
40 row = rand() % 4;
41 column = rand() % 13;
42 } while (workDeck[row][column] != 0);
43
44 workDeck[row]1[column] = card;
45 cout << setw(8) << workFace[column] << " of "
46 << setiosflags(ios::left) << setw(8)
47 << workSuit[row] << resetiosflags(ios::left)
48 << ((card % 2 == 0 ? '\n' : '"\t');
49 }
50 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

192 Pointers and Strings Solutions

Six of Hearts

Deuce
Ace
Seven
Nine
Five
Deuce
Ten
Nine
Ace
Jack
Ten
Queen
King
Deuce
King
Four
Jack
Four
Ace
Seven
Eight
Eight
Six
Five
Ten

5.21 What does this program do?

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

Spades
Spades
Diamonds
Diamonds
Clubs
Clubs
Hearts
Clubs
Hearts
Hearts
Spades
Spades
Clubs
Hearts
Diamonds
Hearts
Clubs
Spades
Diamonds
Clubs
Clubs
Hearts
Clubs
Diamonds
Clubs

Ten of Diamonds

Five
Nine
King
Eight
Seven
Four
Jack
Four
Five
Deuce
Queen
Queen
Six
Three
Three
Jack
Three
Three
Nine
Eight
Seven
Queen
Ace
King
Six

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

Hearts
Spades
Spades
Spades
Spades
Clubs
Diamonds
Diamonds
Spades
Diamonds
Hearts
Diamonds
Spades
Spades
Hearts
Spades
Clubs
Diamonds
Hearts
Diamonds
Hearts
Clubs
Clubs
Hearts
Diamonds

Chapter 5

const char *);

.
I

const char *s2)

1 // ex05_21.cpp

2 #include <iostream>

3

4 using std::cout;

5 using std::cin;

6 using std::endl;

7

8 wvoid mysteryl(char *,

9

10 int main()

11 ¢

12 char stringl[80], string2[80 1;
13

14 cout << "Enter two strings: "
15 cin >> stringl >> string2;

16 mysteryl(stringl, string2);
17 cout << stringl << endl;

18

19 return 0;

20

21

22 void mysteryl(char *sl,

23 {

24 while (*sl !=

25 ++sl;

26

27 for (; *sl = sl++, s2++)
28 ; // empty statement

29 1%

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 193

Enter two strings: stringl string2

stringlstring2
5.22 What does this program do?
1 // ex05_22.cpp
2 #include <iostream>
3
4 using std::cout;
5 using std::cin;
6 using std::endl;
7
8 int mystery2(const char *);
9
10 int main()
11 ¢
12 char string[80];
13
14 cout << "Enter a string: ";
15 cin >> string;
16 cout << mystery2(string) << endl;
17
18 return 0;
19 3
20
21 int mystery2(const char *s)
22 {
23 int x;
24
25 for (x = 0; *s != '"\0'; s++)
26 ++x;
27
28 return x;
29 1%

Enter a string: length

6

5.23

Find the error in each of the following program segments. If the error can be corrected, explain how.
a) int *number;
cout << number << endl;
ANS: Pointer number does not "point" to a valid address. Assigning number to an address would correct the problem.
b) double *realPtr;
long *integerPtr;
integerPtr = realPtr;
ANS: A pointer of type £loat cannot be directly assigned to a pointer of type long.
c) int * x, y;
X =Y;
ANS: Variable y is not a pointer, and therefore cannot be assigned to x. Change the assignment statement tox = &y;.
d) char s[] = "this is a character array";
for (; *s 1= '"\0'; s++)
cout << *s << ' ';
ANS: s is not a modifiable value. Attempting to use operator ++ is a syntax error. Changing to [] notation corrects the
problem as in:
for (int t = 0; s[t 1 != ’\0’; ++t)
cout << s[£t] <<’ ’;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

194 Pointers and Strings Solutions Chapter 5

e) short *numPtr, result;
void *genericPtr = numPtr;
result = *genericPtr + 7;
ANS: A void * pointer cannot be dereferenced.
f) double x = 19.34;
double xPtr = &x;
cout << xPtr << endl;
ANS: =xPtr is not a pointer and therefore cannot be assigned an address. Place a * before xPtr (in the declaration) to
correct the problem. The cout statement display’s the address to which xPtr points (once the previous correction is
made)—this is not an error.
g) char *s;
cout << s << endl;
ANS: s does not "point" to anything. s should be provided with an address.

5.24 (Quicksor?) In the examples and exercises of Chapter 4, we discussed the sorting techniques of the bubble sort, bucket sort,
and selection sort. We now present the recursive sorting technique called Quicksort. The basic algorithm for a single-subscripted
array of values is as follows:

a) Partitioning Step: Take the first element of the unsorted array and determine its final location in the sorted array (i.e.,
all values to the left of the element in the array are less than the element, and all values to the right of the element in the
array are greater than the element). We now have one element in its proper location and two unsorted subarrays.

b) Recursive Step: Perform step 1 on each unsorted subarray.

Each time step 1 is performed on a subarray, another element is placed in its final location of the sorted array, and two unsorted
subarrays are created. When a subarray consists of one element, it must be sorted, therefore that element is in its final location.

The basic algorithm seems simple enough, but how do we determine the final position of the first element of each subarray.
As an example, consider the following set of values (the element in bold is the partitioning element—it will be placed in its final
location in the sorted array):

37 2 6 4 89 8 10 12 68 45

a) Starting from the rightmost element of the array, compare each element with 37 until an element less than 37 is found.
Then swap 37 and that element. The first element less than 37 is 12, so 37 and 12 are swapped. The new array is

12 2 6 4 8 8 10 37 68 45

Element 12 is in italic to indicate that it was just swapped with 37.

b) Starting from the left of the array, but beginning with the element after 12, compare each element with 37 until an ele-
ment greater than 37 is found. Then swap 37 and that element. The first element greater than 37 is 89, so 37 and 89 are
swapped. The new array is

12 2 6 4 37 8 10 89 68 45

c) Starting from the right, but beginning with the element before 89, compare each element with 37 until an element less
than 37 is found. Then swap 37 and that element. The first element less than 37 is 10, so 37 and 10 are swapped. The
new array is

12 2 6 4 10 8 37 89 68 45

d) Starting from the left, but beginning with the element after 10, compare each element with 37 until an element greater
than 37 is found. Then swap 37 and that element. There are no more elements greater than 37, so when we compare 37
with itself, we know that 37 has been placed in its final location of the sorted array.

Once the partition has been applied on the array, there are two unsorted subarrays. The subarray with values less than 37 contains
12,2, 6,4, 10 and 8. The subarray with values greater than 37 contains 89, 68 and 45. The sort continues with both subarrays being
partitioned in the same manner as the original array.

Based on the preceding discussion, write recursive function quicksSort to sort a single-subscripted integer array. The func-
tion should receive as arguments an integer array, a starting subscript and an ending subscript. Function partition should be
called by quickSort to perform the partitioning step.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5

Pointers and Strings Solutions 195

// Exercise 5.24 Solution
#include <iostream>

using std::cout;
using std::endl;

#include <iomanip>

NVOONOGTA WN —

using std::setw;

11 #include <cstdlib>
12 #include <ctime>

14 const int SIZE = 10, MAX NUMBER = 1000;

16 wvoid quicksort(int * const, int, int);
17 wvoid swap(int * const, int * comnst);

18

19 int main()

20 ¢

21 int arrayToBeSorted[SIZE] = { 0 };

22 int loop;

23

24 srand(time(0));

25

26 for (loop = 0; loop < SIZE; ++loop)

27 arrayToBeSorted[loop] = rand() % MAX NUMBER;
28

29 cout << "Initial array values are:\n";

30

31 for (loop = 0; loop < SIZE; ++loop)

32 cout << setw(4) << arrayToBeSorted[loop 1;
33

34 cout << "\n\n";

35

36 if (SIZE == 1)

37 cout << "Array is sorted: " << arrayToBeSorted[0] << '\n';
38 else {

39 quicksort (arrayToBeSorted, 0, SIZE - 1);

40 cout << "The sorted array values are:\n";

41

42 for (loop = 0; loop < SIZE; ++loop)

43 cout << setw(4) << arrayToBeSorted[loop];
44

45 cout << endl;

46 }

47

48 return 0;

49 3

50

51 woid quicksort(int * const array, int first, int last)
52 {

53 int partition(int * comnst, int, int);

54 int currentlLocation;

55

56 if (first >= last)

57 return;

58

59 currentLocation = partition(array, first, last); // place an element
60 quicksort(array, first, currentLocation - 1); // sort left side

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

196 Pointers and Strings Solutions Chapter 5

61 quicksort (array, currentLocation + 1, last); // sort right side
62)

63

64 int partition(int * const array, int left, int right)
65 {

66 int position = left;

67

68 while (true) {

69 while (array[position] <= array[right] && position != right)
70 --right;

71

72 if (position == right)

73 return position;

74

75 if (array[position] > arrayl[right 1) {

76 swap(&array[position], &array[right]);
77 position = right;

78 }

79

80 while (array[left] <= array[position] && left != position)
81 ++left;

82

83 if (position == left)

84 return position;

85

86 if (arrayl[left] > array[position]) {

87 swap(&array[position], &array[left]);

88 position = left;

89 }

90 }

91 3

92

93 void swap(int * comnst ptrl, int * const ptr2)

94 {

95 int temp;

96

97 temp = *ptrl;

98 *ptrl = *ptr2;

99 *ptr2 = temp;

100 3

Initial array values are:
407 766 451 328 17 50 551 620 192 35

The sorted array values are:
17 35 50 192 328 407 451 551 620 766

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5

Pointers and Strings Solutions 197

5.25 (Maze Traversal) The following grid of hashes (#) and dots (.) is a double-subscripted array representation of a maze:
#O# 8 # # 8 # # # # # #
i 0o 0 o W o o o o o o ki
< o # L # L H##HH#E.H
.0# # .
. . . . ##H# .# ..
. 0# . # . # .
. . 0# . 0# . 0# . 0# .
. 0# . 0# . # . # .
ii 0o 0 o 0 0 o o o &l o ki
& # # ## . ##H# . H#
i 0o 0 o 0 0 o i o o o i
#

In the preceding double-subscripted array, the hashes (#), represent the walls of the maze and the dots represent squares in the pos-
sible paths through the maze. Moves can only be made to a location in the array that contains a dot.

There is a simple algorithm for walking through a maze that guarantees finding the exit (assuming that there is an exit). If
there is not an exit, you will arrive at the starting location again. Place your right hand on the wall to your right and begin walking
forward. Never remove your hand from the wall. If the maze turns to the right, you follow the wall to the right. As long as you do
not remove your hand from the wall, eventually you will arrive at the exit of the maze. There may be a shorter path than the one
you have taken, but you are guaranteed to get out of the maze if you follow the algorithm.

Write recursive function mazeTraverse to walk through the maze. The function should receive as arguments a 12-by-12
character array representing the maze and the starting location of the maze. As mazeTraverse attempts to locate the exit from
the maze, it should place the character X in each square in the path. The function should display the maze after each move so the

user can watch as the maze is solved.

1 // Exercise 5.25 Solution

2 // This solution assumes that there is only one

3 // entrance and one exit for a given maze, and

4 // these are the only two zeroes on the borders.

5 $#include <iostream>

6

7 using std::cout;

8 using std::cin;

9

10 #include <cstdlib>

11

12 enum Direction { DOWN, RIGHT, UP, LEFT };

13 const int X START = 2, Y START = 0; // starting coordinate for maze
14

15 +woid mazeTraversal(char []1[12], int, int, int);

16 +void printMaze(const char[][12]);

17 bool validMove(const char [][12], int, int);

18 Dbool coordsAreEdge(int, int);

19

20 int main()

21 {

22 char maze[12][12] =

23 O ("#, "#', '#', ‘#', ‘#r, #, #', "#', '#', '#', '#', '#'},
24 {I#I’ I.I’ I.I’ I.I’ I#I’ L I.I’ I.I’ l_ll I.I’ I.I’ I#I}’
25 {l.l’ |.|’ |#|’ |.|’ |#|’ L] |#|’ |#|, |#|, I#I, |.|’ I#I)’
26 {l#l’ l#l’ l#l’ l.l' I#I' |.|' |.|' |.|' |.|' I#I' |.|' I#I}’
27 {I#I’ I.I’ I.I’ I.I’ I.I’ I#I’ I#I’ I#I’ l_ll I#I’ I.I’ I.I}’
28 {l#l’ |#|’ |#|’ |#|’ |.|’ |#|’ |.|’ |#|, |.|, I#I, |.|’ I#I)’
29 {l#l’ LI I R l#l' LI I#I' LI I#I' v, I#I' LI I#I}’
30 {I#I’ I#I’ v, I#I’ LI I#I’ v, I#I’ v, I#I’ v, I#I}’

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

198 Pointers and Strings Solutions Chapter 5
3'| {l#l’ l.l' l.l' l.l' l.l' l.l' l.l' |.|' |.|' I#I' l.l' l#l}’
32 {'#II '#II '#II '#II '#II '#II "II '#II '#II '#II "II '#I}I
33 {l#l’ I.I’ I.I’ I.I’ |.|' |.|' I.I’ I#I’ I.I’ I.I’ |.|’ I#I}’
34 {#r, #r, vHr, vHr, v#r, v#r, vH#Y, H#Y, H#HY, 'H#', '#', '#'} };
35

36 mazeTraversal(maze, X_START, Y START, RIGHT);

37

38 return 0;

39 1}

40

41 // Assume that there is exactly 1 entrance and exactly 1 exit to the maze.
42 void mazeTraversal(char maze[][12], int xCoord, int yCoord, int direction)
43 {

44 static bool flag = false;

45

46 maze[xCoord][yCoord] = 'x';

47 printMaze(maze);

48

49 if (coordsAreEdge (xCoord, yCoord) && xCoord != X_START &&

50 yCoord != Y START) {

51 cout << "\nMaze successfully exited!\n\n";

52 return; // maze is complete

53 }

54 else if (xCoord == X START && yCoord == X START && flag) {

55 cout << "\nArrived back at the starting location.\n\n";

56 return;

57 }

58 else {

59 flag = true;

60

61 for (int move = direction, count = 0; count < 4; ++count,

62 ++move, move %= 4)

63 switch(move) {

64 case DOWN:

65 if (validMove(maze, xCoord + 1, yCoord)) { // move down
66 mazeTraversal (maze, xCoord + 1, yCoord, LEFT);

67 return;

68 }

69 break;

70 case RIGHT:

71 if (validMove(maze, xCoord, yCoord + 1)) { // move right
72 mazeTraversal(maze, xCoord, yCoord + 1, DOWN);

73 return;

74 }

75 break;

76 case UP:

77 if (validMove(maze, xCoord - 1, yCoord)) { // move up
78 mazeTraversal(maze, xCoord - 1, yCoord, RIGHT);

79 return;

80 }

81 break;

82 case LEFT:

83 if (validMove(maze, xCoord, yCoord - 1)) { // move left
84 mazeTraversal (maze, xCoord, yCoord - 1, UP);

85 return;

86 }

87 break;

88 }

89 }

90

91

92 bool validMove(const char maze[][12], int r, int c)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 199

93 {

94 return (r >= 0 && r <= 11 && c >= 0 && c <= 11 && maze[r][c 1 != "#');
95 3}

96

97 bool coordsAreEdge(int x, int y)

98 {

99 if ((x == || ==11) && (y >= 0 && y <= 11))
100 return true;

101 else if ((y ==0 || y == 11) && (x >= 0 && x <= 11))
102 return true;

103 else

104 return false;

105 1}

106

107 void printMaze(const char maze[][12])

108 ¢

109 for (int x = 0; x < 12; ++x) {

110

111 for (int v = 0; v < 12; ++y)

112 cout << maze[x][y 1 << ' ';

113

114 cout << '\n';

115 }

116

117 cout << "\nHit return to see next move\n";

118 cin.get();

119 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

200 Pointers and Strings Solutions Chapter 5

3o o HEXN
=X M X X XN XN .
M NN XN X N
H N X HEHEEXN NN N H

o
-
(93

HH HEHHHEHHEHENHEHE
=X X X HEX N X 3

Hit

o X H XN FH
H 3 H

N N N NN E
o EN RN N E

CE

H= X HEXN XN XN XX HFHHFH
H X N HE
HXN KN XN XN XN XX XXX H*

3o o

HX HEXN NN NX XN H*EX HF

return to see next move

N N N NN

o o H N HNXN #*

o EN RN N E
o

CE

H=X HEN XN XN X HFHNH®
H N X HEHEEXN NN N H
H= X HEXN XN XN XX HFHHFH
H X N HE
HXN KN XN XN XN XX XXX H*
HHEHFEHHEHEN HEHHEH

HX HEXN NN NX X H*EX HF

return to next move

(7]
o
o

Maze successfully exited!

5.26

(Generating Mazes Randomly) Write a function mazeGenerator that takes as an argument a double-subscripted 12-by-

12 character array and randomly produces a maze. The function should also provide the starting and ending locations of the maze.
Try your function mazeTraverse from Exercise 5.25 using several randomly generated mazes.

NVOONOGTA WN —

// Exercise 5.26 Solution
#include <iostream>

using std::cout;
using std::cin;

#include <cstdlib>
#include <ctime>

enum Direction { DOWN, RIGHT, UP, LEFT };
const int MAX DOTS = 100; // maximum possible dots for maze

void mazeTraversal(char [][12], const int, const int, int, int, int);
void mazeGenerator(char [][12], int *, int *);

void printMaze(const char[][12]);

bool validMove(const char [][12], int, int);

bool coordsAreEdge(int, int);

int main()
{
char maze[12][12];

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions

201

}

int xStart, yStart, x, y;
srand(time(0));
for (int loop = 0; loop < 12; ++loop)
for (int loop2 = 0; loop2 < 12; ++loop2)
maze[loop][loop2 1 = '#';

mazeGenerator(maze, &xStart, &yStart);

xStart; // starting row
yStart; // starting col

x
Yy

mazeTraversal (maze, xStart, yStart, x, y, RIGHT);

return 0;

// Assume that there is exactly 1 entrance and exactly 1 exit to the maze.
void mazeTraversal(char maze[][12], const int xCoord, const int yCoord,

{

int row, int col, int direction)
static bool flag = false; // starting position flag

maze[row][col] = 'x'; // insert X at current location
printMaze(maze);

if (coordsAreEdge(row, col) && row != xCoord && col != yCoord) {
cout << "Maze successfully exited!\n\n";
return; // maze is complete
}
else if (row == xCoord && col == yCoord && flag) {
cout << "Arrived back at the starting location.\n\n";
return;
}
else {

flag = true;

for (int move = direction, count = 0; count < 4;
++count, ++move, move %= 4)

switch(move) {
case DOWN:
if (validMove(maze, row + 1, col)) { // move down
mazeTraversal(maze, xCoord, yCoord, row + 1, col, LEFT);
return;

}
break;
case RIGHT:
if (validMove(maze, row, col + 1)) { // move right
mazeTraversal(maze, xCoord, yCoord, row, col + 1, DOWN);
return;

}
break;
case UP:
if (validMove(maze, row - 1, col)) { // move up
mazeTraversal(maze, xCoord, yCoord, row - 1, col, RIGHT);
return;

}
break;

case LEFT:
if (validMove(maze, row, col - 1)) { // move left

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

202 Pointers and Strings Solutions Chapter 5

84 mazeTraversal (maze, xCoord, yCoord, row, col - 1, UP);
85 return;

86 }

87 break;

88 }

89 }

90 3

91

92 bool validMove(const char maze[][12 1, int r, int c)
93 {

94 return (r >= 0 && r <= 11 && c >= 0 && c <= 11 && maze[r 1[c 1 != "#');
95 3}

96

97 bool coordsAreEdge(int x, int y)

98 {

99 if ((x == || ==11) && (y >= 0 && y <= 11))
100 return true;

101 else if ((y == 0 || vy == 11) && (x >= 0 && x <= 11))
102 return true;

103 else

104 return false;

105 3

106

107 void printMaze(const char maze[][12])

108 ¢

109 for (int x = 0; x < 12; ++x) {

110

111 for (int v = 0; v < 12; ++y)

112 cout << maze[x][y 1 << ' ';

113

114 cout << '\n';

115 }

116

117 cout << "Hit return to see next move";

118 cin.get();

119 3

120

121 wvoid mazeGenerator(char maze[][12], int *xPtr, int *yPtr)
122 ¢

123 int a, %, y, entry, exit;

124

125 do {

126 entry = rand() % 4;

127 exit = rand() % 4;

128 } while (entry == exit);

129

130 // Determine entry position

131

132 if (entry == 0) {

133 *xPtr = 1 + rand() % 10; // avoid corners
134 *yPtr = 0;

135 maze[*xPtr]J[0] = '.';

136 }

137 else if (entry == 1) {

138 *xPtr = 0;

139 *yPtr = 1 + rand() % 10;

140 maze[0][*yPtr] = '.';

141 }

142 else if (entry == 2) {

143 *xPtr = 1 + rand() % 10;

144 *yPtr = 11;

145 maze[*xPtr 1[11] = '.';

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 203

146 }

147 else {

148 *xPtr = 11;

149 *yPtr = 1 + rand() % 10;
150 maze[11][*yPtr] = '.';
151 }

152

153 // Determine exit location
154

155 if (exit == 0) {

156 a=1+ rand() % 10;
157 maze[a J[0] = '.';
158 }

159 else if (exit == 1) {
160 a =1+ rand() % 10;
161 maze[0 J[a] = '.';
162 }

163 else if (exit == 2) {
164 a =1+ rand() % 10;
165 mazel[a J[11] = '.';
166 }

167 else {

168 a=1+ rand() % 10;
169 maze[11 J[a]l = '.';
170 }

171

172 for (int loop = 1; loop < MAX DOTS; ++loop) { // add dots randomly
173 x =1 + rand() % 10;
174 v =1 + rand() % 10;
175 mazel[x][y 1 = "'."';
176 }

177 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

204 Pointers and Strings Solutions

H # # # # H # H# # #
. # # # x # # # H# H#
. . . # xxx # x#
. # # # x x x x x x#
. . # # # # x .o xx
. # x x xx # x # .
. # x xx # # xx#
x x #x . . . x#
x x x # x x x x x
x # x x # x
. # x ox x x x # # #
% # ##Hx# ¥ HH#
Hit return to see next move
H# # # H # # # #
. # ## x H##HHH
. . . # x xx # x#
. # # # x x x x x x
. . # # # # x . x x
. # ox ox x x # x # .
. # x xx # # xx#
#xx#x...x#
ox x x # x x x x x
x # x x # x
. #xxxxx # # %
H x # ¥ HH#

Hit return to see next move
Arrived back at the starting location.

Chapter 5

5.27 (Mazes of Any Size) Generalize functions mazeTraverse and mazeGenerator of Exercises 5.25 and 5.26 to process

mazes of any width and height.

// Exercise 5.27 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

#include <cstdlib>
#include <ctime>

VOO NOGBTAWN —

11 enum Direction { DOWN, RIGHT, UP, LEFT };
12 const int ROWS = 15, COLS = 30;

14 void mazeTraversal(char [][COLS], const int, const int,

15 void mazeGenerator(char [][COLS], int *, int *);
16 +void printMaze(const char[][COLS]);

17 bool validMove(const char [][COLS 1, int, int);
18 bool coordsAreEdge(int, int);

19

20 int main()

21 {

22 char maze[ROWS][COLS 1;

23 int xStart, yStart, x, y;

24

25 srand(time(0));

26

27 for (int loop = 0; loop < ROWS; ++loop)

28 for (int loop2 = 0; loop2 < COLS; ++loop2)

int,

int,

int);

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 205

29 maze[loop 1[loop2 1 = '#';

30

31 mazeGenerator (maze, &xStart, &yStart);
32

33 x = xStart; // starting row

34 y = yStart; // starting col

35

36 mazeTraversal(maze, xStart, yStart, x, y, RIGHT);
37

38 return 0;

39

40

41 // Assume that there is exactly 1 entrance and exactly 1 exit to the ma:ze.
42 void mazeTraversal(char maze[][COLS], const int xCoord, const int yCoord,

43 int row, int col, int direction)

44 {

45 static bool flag = false; // starting position flag

46

47 maze[row][col] = 'x'; // insert x at current location

48 printMaze(maze);

49

50 if (coordsAreEdge(row, col) && row != xCoord && col != yCoord) {
51 cout << endl << "Maze successfully exited!\n\n";

52 return; // maze is complete

53 }

54 else if (row == xCoord && col == yCoord && flag) {

55 cout << "\nArrived back at the starting location.\n\n";

56 return;

57 }

58 else {

59 flag = true;

60

61 for (int move = direction, count = 0; count < 4;

62 ++count, ++move, move %= 4)

63 switch(move) {

64 case DOWN:

65 if (validMove(maze, row + 1, col)) { // move down

66 mazeTraversal(maze, xCoord, yCoord, row + 1, col, LEFT);
67 return;

68 }

69 break;

70 case RIGHT:

71 if (validMove(maze, row, col + 1)) { // move right
72 mazeTraversal (maze, xCoord, yCoord, row, col + 1, DOWN);
73 return;

74 }

75 break;

76 case UP:

77 if (validMove(maze, row - 1, col)) { // move up

78 mazeTraversal(maze, xCoord, yCoord, row - 1, col, RIGHT);
79 return;

80 }

81 break;

82 case LEFT:

83 if (validMove(maze, row, col - 1)) { // move left

84 mazeTraversal (maze, xCoord, yCoord, row, col - 1, UP);
85 return;

86 }

87 break;

88 }

89 }

90

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

206 Pointers and Strings Solutions Chapter 5
91

92 ©bool validMove(const char maze[][COLS], int r, int c)
93 {

94 return (r >= 0 & r <= ROWS - 1 && ¢ >= 0 && c <= COLS - 1 &&
95 mazel[r 1[¢ 1 != '#'); // a valid move

96 1}

97

98 ©bool coordsAreEdge(int x, int y)

99 {

100 if ((% == || * == ROWS - 1) & (y >= 0 & y <= COLS - 1))
101 return true;

102 else if ((y == 0 || == COLS - 1) & (x >= 0 & x <= ROWS - 1))
103 return true;

104 else

105 return false;

106 3}

107

108 void printMaze(const char maze[][COLS])

109 {

110 for (int x = 0; X < ROWS; ++x) {

111

112 for (int y = 0; y < COLS; ++y)

113 cout << mazel[x 1[vy] << ' ';

114

115 cout << '\n';

116 }

117

118 cout << "\nHit return to see next move";

119 cin.get();

120 3

121

122 void mazeGenerator(char maze[][COLS], int *xPtr, int *yPtr)
123 ¢

124 int a, %, y, entry, exit;

125

126 do {

127 entry = rand() % 4;

128 exit = rand() % 4;

129 } while (entry == exit);

130

131 // Determine entry position

132 if (entry == 0) {

133 *xPtr = 1 + rand() % (ROWS - 2); // avoid corners
134 *yPtr = 0;

135 maze[*xPtr][*yPtr] = '.';

136 }

137 else if (entry == 1) {

138 *xPtr = 0;

139 *yPtr = 1 + rand() % (COLS - 2);

140 maze[*xPtr][*yPtr] = '.';

141 }

142 else if (entry == 2) {

143 *xPtr = 1 + rand() % (ROWS - 2);

144 *yPtr = COLS - 1;

145 maze[*xPtr][*yPtr] = '.';

146 }

147 else {

148 *xPtr = ROWS - 1;

149 *yPtr = 1 + rand() % (COLS - 2);

150 maze[*xPtr][*yPtr 1 = '.';

151 }

152

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 207

153 // Determine exit location

154 if (exit == 0) {

155 a=1+rand() % (ROWS - 2);
156 maze[a J[0] = '.';

157 }

158 else if (exit == 1) {

159 a=14+ rand() % (COLS - 2);
160 maze[0 J[a] = '.';

161 }

162 else if (exit == 2) {

163 a=14+ rand() % (ROWS - 2);
164 maze[a][COLS - 1] = '.';
165 }

166 else {

167 a=14+rand() % (COLS - 2);
168 maze[ROWS - 1][a]l = '.';
169 }

170

171 for (int loop = 1; loop < (ROWS - 2) * (COLS - 2); ++loop) {
172 x =1+ rand() % (ROWS - 2); // add dots to maze
173 y =1+ rand() % (COLS - 2);
174 maze[x][y 1 = '.';

175 }

176 1}

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

208 Pointers and Strings Solutions Chapter 5

Hit return to see next move

H# # H# # H # HH#H . #HHHEHEHEHEHEHEHEHEHEHHFH
. . #.#%. . .H#xxx#txxxxxx#t.H.H#H#
. . . . ## . H##H#EHE. .. o xxxt$xxxx#t. . H##
. # . # # . # # . ## . . 0# . # . #x# H#H#F .. HH#H
. # # . . . # # . . ###. . .=xxxxx#.##%#
. # # # . . . # . # . #H# o xH##Exxx$. #H#
. # # . H# .. HH#HHE.xH#.H#HxH..#H#
. x XX XXX . # % . # . xx#x# . # .
#xx##x#x. ... H##&..#$H# . H##Fxxxx...#
#x# #xx#xx........H%.H.##txH...#
XX #xxxx#xxx. . XXXXXXX .XxXxxxx#t# .#
#xxx# #x##x. #tx#txx#txxx#$xtx##$
#xx# . #xHtxxxxxx#x##H##H#txxxt# . .H#
. #x# . #xxxx#xH#tHH#xxxHhtH$xxH#txHh .. .
H # H # HHHHHEHHE R R HHH
Hit return to see next move

x # # # # # # # # # # H## HH# M
. .# %, HxxxH#xxxxxx# .. H##
. .. . ## . ###H#HH#HE... o xxxt$dxxxx#t..H##
. 0# . 0# . # # . ## . HH# .%o H . HxH#HEHE .. H#HH
. # # . . . ## . . ##. ... #. . .xxxxx#t.##H#
. # # # . . . # . # . # # # . o x##Fxxx#.
. # # . H# .. HH#HHE.oxH#.HExH..#H#
. x Xx X XXX . # # . # . . xx#x$. #.##
xx# #x#x. ... H##&..#$H#.Htxxxx...#
#x# #xx#xx........H%..H.##x#...#
X x #xxxxH#XXX. . XXXXXXX .xxxxx$## .#
##xxx# #xH#t#x. txtxx#tdxxxtxx ###
##xx# .. txHtxxxxxx#x##H##H#xxxt# . .H#
. #x# . #xxxx#x#H#FxxxH#tdxxtx#t. . .H
H # H# HHHHHEHHE S S H # #

Hit return to see next move

Maze successfully exited!

5.28 (Arrays of Pointers to Functions) Rewrite the program of Fig. 4.23 to use a menu-driven interface. The program should
offer the user five options as follows (these should be displayed on the screen):

Enter a choice:

Print the array of grades

Find the minimum grade

Find the maximum grade

Print the average on all tests for each student
End program

B WNhREROo

One restriction on using arrays of pointers to functions is that all the pointers must have the same type. The pointers must be to
functions of the same return type that receive arguments of the same type. For this reason, the functions in Fig. 4.23 must be mod-
ified so they each return the same type and take the same parameters. Modify functions minimum and maximum to print the min-
imum or maximum value and return nothing. For option 3, modify function average of Fig. 4.23 to output the average for each
student (not a specific student). Function average should return nothing and take the same parameters as printArray, min-
imum and maximum. Store the pointers to the four functions in array processGrades, and use the choice made by the user as

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5

the subscript into the array for calling each function.

Pointers and Strings Solutions 209

// Exercise 5.28 Solution
#include <iostream>

using std::cout;
using std::cin;

using std::ios;

#include <iomanip>

NVOONOGTA WN —

10 using std::setw;

11 using std::setprecision;
12 using std::setiosflags;
13 wusing std::resetiosflags;

15 const int STUDENTS = 3, EXAMS = 4;

17 wvoid minimum(const int []1[EXAMS 1, int, int);
18 wvoid maximum(const int [][EXAMS], int, int);
19 void average(const int [][EXAMS], int, int);
20 void printArray(const int [][EXAMS], int, int
21 wvoid printMenu(void);

)

22 int test(bool (*)(int, int), int, int, int, const int [][EXAMS]);
23

24 int main()

25 {

26 void (*processGrades[4])(const int [][EXAMS], int, int)
27 = { printArray, minimum, maximum, average };
28

29 int choice = 0,

30 studentGrades[STUDENTS][EXaMs] = { { 77, 68, 86, 73 },
31 { 96, 87, 89, 78 },
32 { 70, 90, 86, 81 } };
33

34 while (choice != 4) {

35

36 do {

37 printMenu () ;

38 cin >> choice;

39 } while (choice < 0 || choice > 4);

40

41 if (choice != 4)

42 (*processGrades[choice]) (studentGrades, STUDENTS, EXAMS);
43 else

44 cout << "Program Ended.\n";

45 }

46

47 return 0;

48)

49

50 void minimum(const int grades[][EXAMS], int pupils, int tests)
51 ¢

52 bool smaller(int, int);

53

54 cout << "\n\tThe lowest grade is "

55 << test(smaller, pupils, tests, 100, grades) << '\n';

56 }

57

58 +void maximum(const int grades[][EXAMS], int pupils, int tests)
59 {

60 bool greater(int, int);

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

210 Pointers and Strings Solutions

Chapter 5

61

62 cout << "\n\tThe highest grade is "

63 << test(greater, pupils, tests, 0, grades) << '\n';
64 }

65

66 int test(bool (*ptr)(int, int), int p, int t, int value,
67 const int g[][EXAMS])

68 {

69 for (int i = 0; i < p; ++i)

70 for (int j = 0; j < t; ++j)

71 if ((*ptr)(gl i 1[J 1, value))

72 value = g[1 1[J 1;

73

74 return value; // return max/min value

75 1}

76

77 +void average(const int grades[][EXAMS], int pupils, int tests)
78 {

79 int total;

80

81 cout << setiosflags(ios::fixed | ios::showpoint) << '\n';
82

83 for (int i = 0; i < pupils; ++i) {

84 total = 0; // reset total

85

86 for (int j = 0; j < tests; ++3j)

87 total += grades[i 1[j 1;

88

89 cout << "\tThe average for student " << pupils + 1 << " ig "
90 << setprecision(1)

91 << static_cast< double > (total) / tests << '\n';
92 }

93

94 cout << resetiosflags(ios::fixed | ios::showpoint);

95 1}

96

97 wvoid printArray(const int grades[][EXAMS], int pupils, int tests
98 {

99 cout << "\n [0] [11 [2]1 [31";

100

101 for (int i = 0; i < pupils; ++i) {

102 cout << "\nstudentGrades[" << i << ']';

103

104 for (int j = 0; j < tests; ++j)

105 cout << setw(5) << grades[i 1[7 1;

106 }

107

108 cout << '\n';

109 3

110

111 void printMenu(void)

112 ¢

113 cout << "\nEnter a choice:\n"

114 << " 0 Print the array of grades\n"

115 << " 1 Find the minimum grade\n"

116 << " 2 Find the maximum grade\n"

117 << " 3 Print the average on all tests for each student\n"
118 << " 4 End program\n? ";

119 3

120

121 bool greater(int a, int b)

122 ¢

)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 211

123 return a > b;

124 3

125

126 bool smaller(int a, int b)
127 ¢

128 return a < b;

129 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

212 Pointers and Strings Solutions Chapter 5

Enter a choice:
0 Print the array of grades
Find the minimum grade
Find the maximum grade
Print the average on all tests for each student
End program

ok WNR

[0] [1] [2] [3]
studentGrades[0] 77 68 86 73
studentGrades|[1] 96 87 89 78
studentGrades|[2] 70 90 86 81

Enter a choice:

Print the array of grades

Find the minimum grade

Find the maximum grade

Print the average on all tests for each student
End program

Rk WNRO

The lowest grade is 68

Enter a choice:

Print the array of grades

Find the minimum grade

Find the maximum grade

Print the average on all tests for each student
End program

NB®dWNRO

The highest grade is 96

Enter a choice:
0 Print the array of grades
Find the minimum grade
Find the maximum grade
Print the average on all tests for each student
End program

Wk wNnPR

The average for student 4 is 76.0
The average for student 4 is 87.5
The average for student 4 is 81.8

Enter a choice:
0 Print the array of grades
Find the minimum grade
Find the maximum grade
Print the average on all tests for each student
End program

R WD R

?

Program Ended.

5.29 (Modifications to the Simpletron Simulator) In Exercise 5.19, you wrote a software simulation of a computer that executes
programs written in Simpletron Machine Language (SML). In this exercise, we propose several modifications and enhancements
to the Simpletron Simulator. In Exercises 15.26 and 15.27, we propose building a compiler that converts programs written in a high-
level programming language (a variation of BASIC) to SML. Some of the following modifications and enhancements may be re-
quired to execute the programs produced by the compiler. (Note: Some modifications may conflict with others and therefore must
be done separately.)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 213

a)

b)

c)
d)

€)

2

h)

i)

Extend the Simpletron Simulator’s memory to contain 1000 memory locations to enable the Simpletron to handle larger
programs.

Allow the simulator to perform modulus calculations. This requires an additional Simpletron Machine Language in-
struction.

Allow the simulator to perform exponentiation calculations. This requires an additional Simpletron Machine Language
instruction.

Modity the simulator to use hexadecimal values rather than integer values to represent Simpletron Machine Language
instructions.

Modify the simulator to allow output of a newline. This requires an additional Simpletron Machine Language instruc-
tion.

Modify the simulator to process floating-point values in addition to integer values.

Modify the simulator to handle string input. [Hint: Each Simpletron word can be divided into two groups, each holding
a two-digit integer. Each two-digit integer represents the ASCII decimal equivalent of a character. Add a machine-lan-
guage instruction that will input a string and store the string beginning at a specific Simpletron memory location. The
first half of the word at that location will be a count of the number of characters in the string (i.e., the length of the
string). Each succeeding half-word contains one ASCII character expressed as two decimal digits. The machine-lan-
guage instruction converts each character into its ASCII equivalent and assigns it to a half-word.]

Modify the simulator to handle output of strings stored in the format of part (g). [Hint: Add a machine language instruc-
tion that will print a string beginning at a certain Simpletron memory location. The first half of the word at that location
is a count of the number of characters in the string (i.e., the length of the string). Each succeeding half-word contains
one ASCII character expressed as two decimal digits. The machine-language instruction checks the length and prints
the string by translating each two-digit number into its equivalent character.]

Modify the simulator to include instruction SML_DEBUG that prints a memory dump after each instruction is executed.
Give SML_DEBUG an operation code of 44. The word +4401 turns on debug mode and +4400 turns off debug mode.

5.30 What does this program do?

//

NV OoONOGBAWN—

ex05_30.cpp

#include <iostream>
using std::cout;
using std::cin;

using std::endl;

bool mystery3(const char *, const char *);

10 int main()

11

20

char stringl[80], string2[80];

cout << "Enter two strings: ";
cin >> stringl >> string2;
cout << "The result is "
<< mystery3(stringl, string2) << endl;

return 0;

22 bool mystery3(const char *sl, const char *s2)

23 ¢

for (; *sl != '\0' && *s2 != '\0'; sl++, S2++)

if (*sl1l != *s2)
return false;

return true;

ANS: Function mystery3 compares two strings for equality.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

214 Pointers and Strings Solutions Chapter 5

STRING MANIPULATION EXERCISES

5.31 Write a program that uses function stremp to compare two strings input by the user. The program should state whether
the first string is less than, equal to or greater than the second string.

// Exercise 5.31 Solution
#include <iostream>

using std::cout;
using std::endl;

using std::cin;

#include <cstring>

NV OONOGBAWN—

10 comnst int SIZE = 20;

12 int main()

13 {

14 char stringl[SIZE], string2[SIZE];

15 int result;

16

17 cout << "Enter two strings: ";

18 cin >> stringl >> string2;

19

20 result = strcmp(stringl, string2);

21

22 if (result > 0)

23 cout << '"\"' << stringl << '\"' << " is greater than \""
24 << string2 << '\"' << endl;

25 else if (result == 0)

26 cout << '\"!' << stringl << '\"' << " is equal to \"" << string2
27 << '"\"' << endl;

28 else

29 cout << '"\"' << stringl << '\"' << " is less than \"" << string2
30 << '"\"' << endl;

31

32 return 0;

33 1}

Enter two strings: green leaf
"green" is less than "leaf"

5.32 Write a program that uses function strnemp to compare two strings input by the user. The program should input the num-
ber of characters to be compared. The program should state whether the first string is less than, equal to or greater than the second
string.

// Exercise 5.32 Solution
#include <iostream>

using std::cout;
using std::endl;

using std::cin;

#include <cstring>

NVOONOGTTBAWN —

10 comst int SIZE = 20;

12 int main()

13 {

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 215

14 char stringl[SIZE], string2[SIZE];

15 int result, compareCount;

16

17 cout << "Enter two strings: ";

18 cin >> stringl >> string2;

19 cout << "How many characters should be compared: ";

20 cin >> compareCount;

21

22 result = strncmp(stringl, string2, compareCount);

23

24 if (result > 0)

25 cout << '"\"' << stringl << "\" is greater than \"" << string2
26 << "\" up to " << compareCount << " characters\n";
27 else if (result == 0)

28 cout << '"\"' << stringl << "\" is equal to \"" << string2
29 << "\" up to " << compareCount << " characters\n";
30 else

31 cout << '\"' << stringl << "\" is less than \"" << string2
32 << "\" up to " << compareCount << " characters\n";
33

34 cout << endl;

35

36 return 0;

37 1}

Enter two strings: sand sandpaper
How many characters should be compared: 4
"sand" is equal to "sandpaper" up to 4 characters

5.33 Write a program that uses random-number generation to create sentences. The program should use four arrays of pointers
to char calledarticle,noun, verb and preposition. The program should create a sentence by selecting a word at random
from each array in the following order: article, noun, verb, preposition, article and noun. As each word is picked,
it should be concatenated to the previous words in an array that is large enough to hold the entire sentence. The words should be
separated by spaces. When the final sentence is output, it should start with a capital letter and end with a period. The program should
generate 20 such sentences.

The arrays should be filled as follows: the article array should contain the articles "the", "a", "one", "some" and
"any"; the noun array should contain the nouns "boy", "girl", "dog", "town" and "car"; the verb array should con-
tain the verbs "drove", "jumped", "ran", "walked" and "skipped"; the preposition array should contain the prep-
ositions "to", "from", "over", "under" and "on".

After the preceding program is written and working, modify the program to produce a short story consisting of several of
these sentences. (How about the possibility of a random term paper writer!)

1 // Exercise 5.33 Solution
2 $#include <iostream>

K]

4 using std::cout;

5 using std::endl;

6

7 #include <cstdlib>

8 #include <ctime>

9

10 #include <cstring>

11 #include <cctype>

12

13 const int SIZE = 100;
14

15 int main()

16 {

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

216 Pointers and Strings Solutions Chapter 5

17 const char *article[] = { "the", "a", "one", "some", "any" },
18 *noun[] = { "boy", "girl", "dog", "town", "car" },

19 *vyerb[] = { "drove", "jumped", "ran", "walked", "skipped" },
20 *preposition[] = { "to", "from", "over", "under", "on" };
21 char sentence[SIZE] = "";

22

23 for (int i = 1; i <= 20; ++i) {

24 strcat (sentence, article[rand() % 5 1);

25 strcat (sentence, " ");

26 strcat(sentence, noun[rand() % 5 1):

27 strcat(sentence, " ");

28 strcat (sentence, verb[rand() % 5 1);

29 strcat (sentence, " ");

30 strcat (sentence, preposition[rand() % 5 1);

31 strcat (sentence, " ");

32 strcat(sentence, article[rand() % 5 1);

33 strcat(sentence, " ");

34 strcat (sentence, noun[rand() % 5 1);

35 cout << static_cast< char > (toupper(sentencel[0]))
36 << &sentencel[1] << ".\n";

37 sentence[0] = '\0';

38 }

39

40 cout << endl;

41

42 return 0;

43)

A dog skipped to any car.

Some town ran on the boy.

A dog jumped from the dog.

One girl jumped on one town.
One dog jumped from some boy.
One girl jumped under any dog.
One car drove on some girl.
One town walked on a girl.

Some town ran on one dog.

One car walked from any town.
A boy drove over some girl.
The dog skipped under a boy.
The car drove to a girl.

Some town skipped under any car.
A boy jumped from a town.

Any car jumped under one town.
Some dog skipped from some boy.
Any town skipped to one girl.
Some girl jumped to any dog.
The car ran under one dog.

5.34 (Limericks) A limerick is a humorous five-line verse in which the first and second lines rhyme with the fifth, and the third
line thymes with the fourth. Using techniques similar to those developed in Exercise 5.33, write a C++ program that produces ran-
dom limericks. Polishing this program to produce good limericks is a challenging problem, but the result will be worth the effort!

5.35 Write a program that encodes English language phrases into pig Latin. Pig Latin is a form of coded language often used for
amusement. Many variations exist in the methods used to form pig Latin phrases. For simplicity, use the following algorithm:

To form a pig-Latin phrase from an English-language phrase, tokenize the phrase into words with function strtok. To trans-
late each English word into a pig-Latin word, place the first letter of the English word at the end of the English word, and add the
letters “ay.” Thus the word “Jump” becomes “umpjay,”’ the word ‘the” becomes “hetay” and the word ‘computer”
becomes “omputercay.” Blanks between words remain as blanks. Assume that the: the English phrase consists of words sepa-
rated by blanks, there are no punctuation marks and all words have two or more letters. Function printLatinWord should dis-

3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5

Pointers and Strings Solutions 217

play each word. (Hint: Each time a token is found in a call to strtok, pass the token pointer to function printLatinWord,
and print the pig Latin word.)

VOO NOGBTAWN —

// Exercise 5.35 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;
#include <cstring>
const int SIZE = 80;

void printLatinWord(char const * const);

int main()

{
char sentence[SIZE], *tokenPtr;
cout << "Enter a sentence:\n";
cin.getline(sentence, SIZE);
cout << "\nThe sentence in Pig Latin is:\n";
tokenPtr = strtok(sentence, " .,;");
while (tokenPtr) {
printLatinWord(tokenPtr);
tokenPtr = strtok(0, " .,;");
if (tokenPtr)
cout << ' ';
}
cout << '.' << endl;
return 0;
}
void printLatinWord(char const * const wordPtr)
{
int len = strlen(wordPtr);
for (int i = 1; i < len; ++i)
cout << *(wordPtr + i);
cout << *wordPtr << "ay";
}

Enter a sentence:
mirror mirror on the wall

The sentence in Pig Latin is:
irrormay irrormay noay hetay allway.

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

218 Pointers and Strings Solutions

5.36 Write a program that inputs a telephone number as a string in the form (555) 555-5555. The program should use func-
tion strtok to extract the area code as a token, the first three digits of the phone number as a token, and the last four digits of the
phone number as a token. The seven digits of the phone number should be concatenated into one string. The program should convert
the area code string to int and convert the phone number string to 1ong. Both the area code and the phone number should be

printed.

// Exercise 5.36 Solution
#include <iostream>

using std::cout;
using std::endl;

using std::cin;

#include <cstring>
#include <cstdlib>

int main()

OBRWN—=0OVONOCRARWN —

{
const int SIZEl = 20, SIZE2
char p[SIZE1l],
phoneNumber[SIZE2] "\0'
16 int areaCode;
17 long phone;
18
19 cout << "Enter a phone number in the form (555) 555-5555:\n";
20 cin.getline(p, SIZEl);
21
22 areaCode = atoi(strtok(p,)
23
24 tokenPtr = strtok(0, "-"
25 strcpy(phoneNumber, tokenPtr);
26 tokenPtr = strtok(0, ""
27 strcat (phoneNumber, tokenPtr);
28 phone = atol(phoneNumber);
29
30 cout << "\nThe integer area code is " << areaCode
31 << "\nThe long integer phone number is " << phone << endl;
32
33 return 0;
34

Enter a phone number in the form (555) 555-5555:

(555) 492-4195

The integer area code is 555

The long integer phone number is 4924195

5.37 Write a program that inputs a line of text, tokenizes the line with function strtok and outputs the tokens in reverse order.

// Exercise 5.37 Solution
#include <iostream>

using std::cout;
using std::endl;

using std::cin;

#include <cstring>

OVONOCOEAE WN—

—

void reverseTokens(char * const);

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

*tokenPtr;

Chapter 5 Pointers and Strings Solutions 219

12 int main()

13

14 const int SIZE = 80;

15 char text[SIZE];

16

17 cout << "Enter a line of text:\n";

18 cin.getline(text, SIZE);

19 reverseTokens(text);

20 cout << endl;

21

22 return 0;

23)

24

25 void reverseTokens(char * const sentence)
26 {

27 char *pointers[50], *temp;

28 int count = 0;

29

30 temp = strtok(sentence, " ");

31

32 while (temp) {

33 pointers[count++] = temp;

34 temp = strtok(0, ™ ");

35 }

36

37 cout << "\nThe tokens in reverse order are:\n";
38

39 for (int i = count - 1; i >= 0; --i)
40 cout << pointers[i] << ' ';

41

Enter a line of text:
twinkle twinkle little star

The tokens in reverse order are:
star little twinkle twinkle

5.38 Use the string comparison functions discussed in Section 5.12.2 and the techniques for sorting arrays developed in Chapter
4 to write a program that alphabetizes a list of strings. Use the names of 10 or 15 towns in your area as data for your program.

// Exercise 5.38 Solution
#include <iostream>

using std::cout;
using std::endl;

using std::cin;

#include <cstring>

NV OONOOTRARWN—

10 comnst int SIZE = 50;
11 wvoid bubbleSort(char []1[SIZE]);

12

13 int main()

14 ¢{

15 char array[10][SIZE];

16 int i;

17

18 for (i =0; i < 10; ++i) {

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

220 Pointers and Strings Solutions

Chapter 5

19 cout << "Enter a string: ";

20 cin >> &array[i 1[0 1;

21 }

22

23 bubbleSort (array);

24 cout << "\nThe strings in sorted order are:\n";
25

26 for (i =0; i < 10; ++i)

27 cout << &arrayl[i][0] << endl;
28

29 return 0;

30 }

31

32 +woid bubbleSort(char al[l[SIZE])
33 {

34 char temp[SIZE 1];

35

36 for (int i = 0; i <= 8; ++i)

37 for (int j = 0; j <= 8; ++j)

38 if (stremp(&al[j 1L 01, &l j + 1 1L 01) > 0) {
39 strcpy(temp, &al j 1[0 1);

40 strepy(&l j 1[0 1, &l j + 1 1[0 1);
41 strcpy(&al 7 + 1 1[0 1, temp);

42 }

43 3

Enter a string: Windsor

Enter a string: Pittsford

Enter a string: Warren

Enter a string: Killington

Enter a string: Marlboro

Enter a string: Grafton

Enter a string: Middlebury

Enter a string: Barre

Enter a string: Montpelier

Enter a string: Wolcott

The strings in sorted order are:
Barre
Grafton
Killington
Marlboro
Middlebury
Montpelier
Pittsford
Warren
Windsor
Wolcott

5.39 Write two versions of each of the string copy and string concatenation functions in Fig. 5.29. The first version should use

array subscripting, and the second version should use pointers and pointer arithmetic.

// Exercise 5.39 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

NOOTA WN—

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 221

8 char *stringCopyl(char *, const char *);

9 char *stringCopy2(char *, const char *);

10 char *stringNCopyl(char *, const char *, unsigned);
11 char *stringNCopy2(char *, const char *, unsigned);
12 char *stringCatl(char *, const char *);

13 char *stringCat2(char *, const char *);

14 char *stringNCatl(char *, const char *, unsigned);
15 char *stringNCat2(char *, const char *, unsigned);

16

17 int main()

18 ¢

19 int n = 4;

20 char stringl[100], string2[100];

21

22 cout << "Enter a string: ";

23 cin >> string2;

24

25 cout << "Copied string returned from stringCopyl is "

26 << stringCopyl(stringl, string2)

27 << "\nCopied string returned from stringCopy2 is "

28 << stringCopy2(stringl, string2);

29 cout << "\nCopied " << n << " elements returned from stringNCopyl is "
30 << stringNCopyl(stringl, string2, n);

31 cout << "\nCopied " << n << " elements returned from stringNCopy2 is "
32 << stringNCopy2(stringl, string2, n);

33 cout << "\nConcatenated string returned from stringCatl is "
34 << stringCatl(stringl, string2);

35 cout << "\nConcatenated string returned from stringCat2 is "
36 << stringCat2(stringl, string2);

37 cout << "\nConcatenated string returned from stringNCatl is "
38 << stringNCatl(stringl, string2, n);

39 cout << "\nConcatenated string returned from stringNCat2 is "
40 << stringNCat2(stringl, string2, n) << endl;

41

42 return 0;

43)

44

45 char *stringCopyl(char *sl, const char *s2)

46 {

47 for (int sub = 0; s1[sub] = s2[sub]; ++sub)

48 ; // empty body

49

50 return sl;

51

52

53 char *stringCopy2(char *sl, const char *s2)

54 ¢

55 char *ptr = sl;

56

57 for (; *sl = *s2; ++sl, ++s2)

58 ; // empty body

59

60 return ptr;

61

62

63 char *stringNCopyl(char *sl1l, const char *s2, unsigned n)

64 {

65 unsigned c;

66

67 for (c=0; c<n & (sl[c] =82[c]); ++c)

68 ; // empty body

69

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

222 Pointers and Strings Solutions Chapter 5

70 sl[c] = '"\0';

71 return sl;

72)

73

74 char *stringNCopy2(char *sl1, const char *s2, unsigned n)
75 {

76 char *ptr = sl;

77

78 for (unsigned ¢ = 0; ¢ < n; ++c, ++sl, ++s2)
79 *sl = *g2;

80

81 *sl = '\0';

82 return ptr;

83 1

84

85 char *stringCatl(char *sl, const char *s2)
86 {

87 int x;

88

89 for (x = 0; s1[x] != '\0'; ++x)

90 ; // empty body

21

92 for (int y = 0; s1[x] = s2[v 1; ++x, ++y)
93 ; // empty body

94

95 return sl;

96 3}

97

98 char *stringCat2(char *sl, const char *s2)
99 {

100 char *ptr = sl;

101

102 for (; *sl != '\0'; ++sl)

103 ; // empty body

104

105 for (; *sl = *s2; ++sl, ++s2)

106 ; // empty body

107

108 return ptr;

109 3

110

111 char *stringNCatl(char *sl, const char *s2, unsigned n)
112 ¢

113 int x;

114

115 for (x = 0; s1[x] != '"\0'; ++x)

116 ; // empty body

117

118 for (unsigned y = 0; y < n && (s1[x 1 = s2[y 1); ++x, ++y)
119 ; // empty body

120

121 sl[x] = "\0';

122 return sl;

123 3

124

125 char *stringNCat2(char *sl, const char *s2, unsigned n)
126 {

127 char *ptr = sl;

128

129 for (; *sl != '"\0'; ++sl)

130 ; // empty body

131

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 223

132 for (unsigned ¢ = 0 ; ¢ < n & (*sl = *s2); ++sl, ++s2)
133 ; // empty body

134

135 *sl = "\0';

136 return ptr;

137 13

Enter a string: coo

Copied string returned from stringCopyl is coo

Copied string returned from stringCopy2 is coo

Copied 4 elements returned from stringNCopyl is coo

Copied 4 elements returned from stringNCopy2 is coo
Concatenated string returned from stringCatl is coocoo
Concatenated string returned from stringCat2 is coocoocoo
Concatenated string returned from stringNCatl is coocoocoocoo
Concatenated string returned from stringNCat2 is coocoocoocoocoo

5.40 Write two versions of each string comparison function in Fig. 5.29. The first version should use array subscripting, and the

second version should use pointers and pointer arithmetic.

// Exercise 5.40 Solution
#include <iostream>

using std::cout;
using std::endl;
using std::cin;

int stringComparel(const char *, const char *);
int stringCompare2(const char *, const char *);
10 int stringNComparel(const char *, const char *, unsigned);
11 int stringNCompare2(const char *, const char *, unsigned);

NV ONOOTRARWN—

13 int main()

14 {

15 char stringl[100], string2[100 1;

16 unsigned n = 3; // number of characters to be compared

17

18 cout << "Enter two strings: ";

19 cin >> stringl >> string2;

20

21 cout << "The value returned from stringComparel(\"" << stringl
22 << "\", \"" << string2 << "\") is "

23 << stringComparel(stringl, string2)

24 << "\nThe value returned from stringCompare2(\"" << stringl
25 << "\", \"" << string2 << "\") is "

26 << stringCompare2(stringl, string2) << '\n';

27

28 cout << "\nThe value returned from stringNComparel(\"" << stringl
29 << "\", \"" << string2 << "\", " << n << ") is "

30 << stringNComparel (stringl, string2, n)

31 << "\nThe value returned from stringNCompare2 (\"" << stringl
32 << "\", \"" << string2 << "\", " << n << ") is "

33 << stringNCompare2(stringl, string2, n) << endl;

34

35 return 0;

36 13}

37

38 int stringComparel(const char *sl, const char *s2)
39 {

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

224 Pointers and Strings Solutions Chapter 5

40 int sub;

41

42 // array subscript notation

43 for (sub = 0; s1[sub] == s2[sub]; ++sub)
44 ; // empty statement

45

46 --sub;

47

48 if (s1l[sub] == '\0' && s2[sub] == '\0"')
49 return 0;

50 else if (sl1l[sub] < s2[sub])
51 return -1;

52 else

53 return 1;

54

55

56 int stringCompare2(const char *sl, const char *s2)
57 {

58 // pointer notation

59 for (; *sl == *s2; sl++, S2++)
60 ; // empty statement

61

62 --s1;

63 --82;

64

65 if (*sl == '"\0' && *s2 == '\0')
66 return 0;

67 else if (*sl < *s2)

68 return -1;

69 else

70 return 1;

71 3

72

73 int stringNComparel(const char *sl, const char *s2, unsigned n)
74 (

75 unsigned sub;

76

77 // array subscript notation

78 for (sub = 0; sub < n && (sl[sub] == s2[sub]); sub++)
79 ; // empty body

80

81 --sub;

82

83 if (sl1l[sub] == s2[sub])

84 return 0;

85 else if (s1l[sub] < s2[sub])
86 return -1;

87 else

88 return 1;

89

90

91 int stringNCompare2(const char *sl, const char *s2, unsigned n)
92 {

93 // pointer notation

94 for (unsigned ¢ = 0; ¢ < n && (*sl == *gs2); c++, sl++, S2++)
95 ; // empty statement

96

97 --s1;

98 --s2;

99

100 if (*sl == *s2)

101 return 0;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 5 Pointers and Strings Solutions 225

102 else if (*sl1l < *s2)
103 return -1;

104 else

105 return 1;

106 1}

Enter two strings: tommy tomato
The value returned from stringComparel ("tommy", "tomato") is 1
The value returned from stringCompare2("tommy", "tomato") is 1

The value returned from stringNComparel ("tommy", "tomato", 3) is O

The value returned from stringNCompare2 ("tommy", "tomato", 3) is O

5.41 Write two versions of function strlen in Fig. 5.29. The first version should use array subscripting, and the second version
should use pointers and pointer arithmetic.

1 // Exercise 5.41 Solution

2 $#include <iostream>

K]

4 using std::cout;

5 using std::endl;

6 using std::cin;

7

8 unsigned long stringlLengthl(const char *);

9 unsigned long stringLength2(const char *);

10

11 int main()

12 {

13 char string[100];

14

15 cout << "Enter a string: ";

16 cin >> string;

17

18 cout << "\nAccording to stringLengthl the string length is: "
19 << stringLengthl(string)

20 << "\nAccording to stringLength2 the string length is: "
21 << stringLength2(string) << endl;
22

23 return 0;

24

25

26 unsigned long stringLengthl(const char *sPtr)
27 {

28 // array subscript notation

29 for (int length = 0; sPtr[length] != '\0'; ++length)
30 ; // empty body

31

32 return length;

33 }

34

35 unsigned long stringLength2(const char *sPtr)
36 {

37 // pointer notation

38 for (int length = 0; *sPtr != '\0'; ++sPtr, ++length)
39 ; // empty body

40

41 return length;

42

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

236 Classes and Data Abstraction Solutions

Chapter 6

23 // P6_5M.cpp
24 // member function definitions for p6_05.cpp
25 #include <iostream>

26

27 using std::cout;

28

29 #include <ctime>

30

31 #include "p6_05.h"

32

33 Time::Time()

34 {

35 long int totalTime; // time in seconds since 1970
36 int currentYear = 1998 - 1970; // current year

37 double totalYear; // current time in years

38 double totalDay; // days since beginning of year
39 double day; // current time in days

40 double divisor; // conversion divisor

41 int timeshift = 7; // time returned by time() is
42 // given as the number of seconds
43 // elapsed since 1/1/70 GMT.
44 // Depending on the time zone
45 // you are in, you must shift
46 // the time by a certain

47 // number of hours. For this
48 // problem, 7 hours is the

49 // current shift for EST.

50 double tempMinute; // Used in conversion to seconds.
51 double tempSecond; // Used to set seconds.

52

53 totalTime = time(0);

54 divisor = (60.0 * 60.0 * 24.0 * 365.0);

55 totalYear = totalTime / divisor - currentYear;

56 totalDay = 365 * totalYear; // leap years ignored

57 day = totalDay - static_cast< int >(totalbDay);

58 tempMinute = totalDay * 24 * 60;

59 setHour(day * 24 + timeShift);

60 setMinute((day * 24 - static_cast< int >(day * 24)) * 60);
61 tempMinute -= static_cast< int > (tempMinute) * 60;

62 tempSecond = tempMinute;

63 setSecond(tempSecond);

64

65

66 void Time::printStandard()

67 {

68 cout << ((hour % 12 == 0) ? 12 : hour % 12) << ':'

69 << (minute < 10 ? "O" : "") << minute << ':'

70 << (second < 10 ? "O" : "") << second << '\n';

71 1

72 // driver for p6_05.cpp
73 #include <iostream>

75 wusing std::cout;
76 using std::endl;
77 wusing std::cin;

78 using std::ios;

79 #include "p6_05.h"

80
81 int main()
82 {

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 6 Classes and Data Abstraction Solutions 237

83 Time t;

84

85 t.printStandard();

86

87 return 0;

88 1}

11:26:00
6.6 Create a class called Complex for performing arithmetic with complex numbers. Write a driver program to test your class.
Complex numbers have the form
realPart + imaginaryPart * i

where 1 is

J

Use double variables to represent the private data of the class. Provide a constructor function that enables an object of this
class to be initialized when it is declared. The constructor should contain default values in case no initializers are provided. Provide
public member functions for each of the following:

a)

Addition of two Complex numbers: The real parts are added together and the imaginary parts are added together.

b) Subtraction of two Complex numbers: The real part of the right operand is subtracted from the real part of the left
operand and the imaginary part of the right operand is subtracted from the imaginary part of the left operand.

¢) Printing Complex numbers in the form (a, b) where a is the real part and b is the imaginary part.

1 // P6_06.H

2 #ifndef p6_06_H

3 #$#define p6_06_H

4

5 class Complex {

6 public:

7 Complex(double = 0.0, double = 0.0); // default constructor

8 void addition(const Complex &);

9 void subtraction(const Complex &);

10 void printComplex(void);

11 void setComplexNumber(double, double);

12 private:

13 double realPart;

14 double imaginaryPart;

15 13;

16

17 #endif

18 // p6_06M.cpp

19 // member function definitions for p6_06.cpp

20 #include <iostream>

21

22 using std::cout;

23

24 #include "p6_06.h"

25

26 Complex::Complex(double real, double imaginary)

27 { setComplexNumber(real, imaginary); }

28

29 +woid Complex::addition(const Complex &a)

30 {

31 realPart += a.realPart;

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

238

Classes and Data Abstraction Solutions Chapter 6

32 imaginaryPart += a.imaginaryPart;
33 13}

34

35 wvoid Complex::subtraction(const Complex &s)
36 {

37 realPart -= s.realPart;

38 imaginaryPart -= s.imaginaryPart;
39 13

40

41 void Complex::printComplex(void)
42 { cout << '(' << realPart << ", " << imaginaryPart << ')'; }
43

44 void Complex::setComplexNumber(double rp, double ip)
45 {

46 realPart = rp;

47 imaginaryPart = ip;

48 3}

49 // driver for p6_06.cpp

50 #include <iostream>

51

52 using std::cout;

53 using std::endl;

54

55 #include "p6_06.h"

56

57 int main()

58 {

59 Complex b(1, 7), c¢(9, 2);

60

61 b.printComplex();

62 cout << " + ";

63 c.printComplex();

64 cout << " = ";

65 b.addition(¢);

66 b.printComplex();

67

68 cout << '\n';

69 b.setComplexNumber(10, 1); // reset realPart and imaginaryPart
70 c.setComplexNumber(11, 5);

71 b.printComplex () ;

72 cout << " - v,

73 c.printComplex();

74 cout << " = ";

75 b.subtraction(¢);

76 b.printComplex() ;

77 cout << endl;

78

79 return 0;

80

(1, 7) + (9, 2) = (10, 9)

(10, 1) - (11, 5) = (-1, -4)

6.7

Create a class called Rational for performing arithmetic with fractions. Write a driver program to test your class.

Use integer variables to represent the private data of the class—the numerator and the denominator. Provide a constructor

function that enables an object of this class to be initialized when it is declared. The constructor should contain default values in
case no initializers are provided and should store the fraction in reduced form (i.e., the fraction

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 6 Classes and Data Abstraction Solutions 239

2
4
would be stored in the object as 1 in the numerator and 2 in the denominator). Provide public member functions for each of the
following:
a) Addition of two Rational numbers. The result should be stored in reduced form.
b) Subtraction of two Rational numbers. The result should be stored in reduced form.
¢) Multiplication of two Rational numbers. The result should be stored in reduced form.
d) Division of two Rational numbers. The result should be stored in reduced form.
e) Printing Rational numbers in the form a/b where a is the numerator and b is the denominator.
f) PrintingRational numbers in double floating-point format.
1 // P6_07.H
2 $#ifndef P6_07_H
3 #define P6_07_H
4
5 class Rational {
6 public:
7 Rational(int = 0, int = 1); // default constructor
8 Rational addition(const Rational &);
9 Rational subtraction(const Rational &);
10 Rational multiplication(const Rational &);
11 Rational division(Rational &);
12 void printRational(void);
13 void printRationalAsDouble(void);
14 private:
15 int numerator;
16 int denominator;
17 void reduction(wvoid); // utility function
18 3;
19
20 #endif
21 // P6_07M.cpp
22 // member function definitions for p6_07.cpp
23 #include <iostream>
24
25 using std::cout;
26
27 #include "p6_07.h"
28
29 Rational::Rational(int n, int 4)
30 {
31 numerator = n;
32 denominator = 4;
33 }
34
35 Rational Rational::addition(const Rational &a)
36 {
37 Rational t;
38
39 t.numerator = a.numerator * denominator;
40 t.numerator += a.denominator * numerator;
41 t.denominator = a.denominator * denominator;
42 t.reduction();
43
44 return t;
45)
46
47 Rational Rational::subtraction(const Rational &s)

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

240 Classes and Data Abstraction Solutions

Chapter 6

57)

Rational t;

t.numerator = s.denominator * numerator;

t .numerator -= denominator * s.numerator;
t.denominator = s.denominator * denominator;
t.reduction();

return t;

59 Rational Rational::multiplication(const Rational &m)

60 {

68)

Rational t;
t.numerator = m.numerator * numerator;
t.denominator = m.denominator * denominator;

t.reduction();

return t;

70 Rational Rational::division(Rational &v)

71 {

79 1}

Rational t;
t.numerator = v.denominator * numerator;
t.denominator = denominator * v.numerator;

t.reduction();

return t;

81 +void Rational::printRational(void)

82 ¢

89 1

if (denominator == 0)

cout << "\nDIVIDE BY ZERO ERROR!!!" << '\n';
else if (numerator == 0)

cout << 0;
else

cout << numerator << '/' << denominator;

91 +void Rational::printRationalAsDouble(void)

{ cout << static_cast< double >(numerator) /

94 void Rational::reduction(wvoid)

95

105
106
107
108
109 3

int largest;
largest = numerator > denominator ? numerator :

int gecd = 0; // greatest common divisor

for (int loop = 2; loop <= largest; ++loop)
if (numerator % loop == 0 && denominator %
gced = loop;

if (gcd != 0) {
numerator /= gcd;
denominator /= gcd;

denominator;

denominator;

loop

0

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 6 Classes and Data Abstraction Solutions 241

110 // driver for P6_07.cpp
111 #include <iostream>

112

113 using std::cout;

114 using std::endl;

115

116 #include "p6_07.h"

117

118 int main()

119 {

120 Rational c¢(1, 3), 4(7, 8), x;
121

122 c.printRational();

123 cout << " + ";

124 d.printRational();

125 x = c.addition(4);

126 cout << " = ";

127 X.printRational();

128 cout << '\n';

129 x.printRational();

130 cout << " = ";

131 x.printRationalAsDouble() ;
132 cout << "\n\n";

133

134 c.printRational();

135 cout << " - nu;

136 d.printRational();

137 X = c.subtraction(4);
138 cout << " = ";

139 X.printRational();

140 cout << '\n';

141 x.printRational();

142 cout << " = ";

143 x.printRationalAsDouble() ;
144 cout << "\n\n";

145

146 c.printRational();

147 cout << " x ";

148 d.printRational();

149 X = c.multiplication(4);
150 cout << " = ";

151 x.printRational();

152 cout << '\n';

153 x.printRational();

154 cout << " = »;

155 x.printRationalAsDouble();
156 cout << "\n\n";

157

158 c.printRational();

159 cout << " / u;

160 d.printRational();

161 x = c.division(4);

162 cout << " = ";

163 x.printRational();

164 cout << '\n';

165 x.printRational();

166 cout << " = »;

167 x.printRationalAsDouble();
168 cout << endl;

169

170 return 0;

171 3

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

242 Classes and Data Abstraction Solutions Chapter 6

1/3 + 7/8 = 29/24
29/24 = 1.20833

1/3 - 7/8 -13/24
-13/24 = -0.541667

1/3 x 7/8 = 7/24
7/24 = 0.291667

1/3 / 7/8 = 8/21
8/21 = 0.380952

6.8 Modify the Time class of Fig. 6.10 to include a tick member function that increments the time stored in a Time object
by one second. The Time object should always remain in a consistent state. Write a driver program that tests the tick member
function in a loop that prints the time in standard format during each iteration of the loop to illustrate that thet 1 ck member function
works correctly. Be sure to test the following cases:

a) Incrementing into the next minute.

b) Incrementing into the next hour.

¢) Incrementing into the next day (i.e., 11:59:59 PM to 12:00:00 AM).

1 // P6_08.H

2 #$#ifndef p6_08_H

3 #define p6_08_H

4

5 class Time {

6 public:

7 Time(int = 0, int = 0, int = 0);
8 void setTime(int, int, int);
9 void setHour(int);

10 void setMinute(int);

11 void setSecond(int);

12 int getHour(void);

13 int getMinute(void);

14 int getSecond(void);

15 void printStandard(void);
16 void tick(void);

17 private:

18 int hour;

19 int minute;

20 int second;

21);

22

23 #endif

24 // P6_08M.cpp
25 // member function definitions for p6_08.cpp
26 #include <iostream>

27

28 using std::cout;
29

30 #include "p6_08.h"
31

32 Time::Time(int hr, int min, int sec) { setTime(hr, min, sec); }

34 void Time::setTime(int h, int m, int s)

35 {
36 setHour(h);
37 setMinute(m);

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 6

Classes and Data Abstraction Solutions

243

38 setSecond(s);
39

41 void Time::setHour(int h) { hour

43 void Time::setMinute(int m)

44 {

45 minute = (m >= 0 & m < 60) ? m
46 }

47

48 +void Time::setSecond(int s)

49 {

50 second = (s >= 0 && s < 60) ? s
51

h >> 0 & h < 24) ? h

0;

53 int Time::getHour(void) { return hour; }

55 int Time::getMinute(void) { return
57 int Time::getSecond(void) { return

59 void Time::printStandard(void)
60 {

61 cout << ((hour % 12 == 0) ? 12
62 << (minute < 10 ? "Q" g nnm
63 << (second < 10 ? "Q" : nn
64 << (hour < 12 ? " AM" :

65 }

66

67 void Time::tick(void)

68 {

69 setSecond(getSecond() + 1);

70

71 if (getSecond() == 0) {

72 setMinute(getMinute() + 1);
73

74 if (getMinute() == 0)

75 setHour(getHour() + 1);
76 }

77 1}

minute; }

second; }

)
)

hour % 12) << ':'!
<< minute << ':'
<< second

" pM")'.

0

-
12

}

78 // driver for p6_08.cpp
79 #include <iostream>

81 wusing std::cout;
82 wusing std::endl;

84 #include "p6_08.h"

86 const int MAX_ TICKS = 3000;

88 main()

89 (

90 Time t;

91

92 t.setTime(23, 59, 57);

93

94 for (int ticks = 1; ticks < MAX TICKS; ++ticks) {
95 t.printStandard();

96 cout << endl;

97 t.tick();

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

244 Classes and Data Abstraction Solutions Chapter 6

98 }

99

100 return 0;
101 3

11:59:57 PM

12:49:50 AM
12:49:51 AM
12:49:52 AM
12:49:53 AM
12:49:54 AM
12:49:55 AM

6.9 Modify the Date class of Fig. 6.12 to perform error checking on the initializer values for data members month, day and
year. Also, provide a member function nextDay to increment the day by one. The Date object should always remain in a con-
sistent state. Write a driver program that tests the nextDayfunction in a loop that prints the date during each iteration of the loop
to illustrate that the nextDay function works correctly. Be sure to test the following cases:

a) Incrementing into the next month.

b) Incrementing into the next year.

1 // P6_09.H

2 #ifndef p6_09 H

3 #define p6_09_H

4

5 class Date {

6 public:

7 Date(int = 1, int = 1, int = 1900); // default constructor
8 void print(void);

9 void setDate(int, int, int);
10 void setMonth(int);
11 void setDay(int);

12 void setYear(int);
13 int getMonth(void);
14 int getDay(void);

15 int getYear(void);
16 bool leapYear(void);
17 int monthDays(void);
18 void nextDay(void);
19 private:

20 int month;

21 int day:;

22 int year;

23 };

24

25 #endif

26 // p6_09M.cpp
27 // member function definitions for p6_09.cpp
28 #include <iostream>

29

30 using std::cout;
31

32 #include "p6_09.h"
33

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Chapter 6 Classes and Data Abstraction Solutions

245

Date::Date(int m, int 4, int y) { setDate(m, 4, vy); }
int Date::getDay() { return day; }

int Date::getMonth() { return month; }

int Date::getYear() { return year; }

void Date::setDay(int 4)

{
if (month == 2 && leapYear())
day = (d <=29 & d >=1) 24 : 1;
else
day = (d <= monthDays() & d >= 1) 2 d : 1;
}

void Date::setMonth(int m) { month = m <= 12 & m >= 1 ? m : 1; }

void Date::setYear(int y)

{

year = y <= 2000 && y >= 1900 ? y : 1900;
}
void Date::setDate(int mo, int dy, int yr)
{

setMonth(mo);

setDay(dy):;

setYear(yr);
}

void Date::print ()
{ cout << month << '-' << day << '-' << year << '\n'; }

void Date: :nextDay ()

{
setDay(day + 1);
if (day == 1) {
setMonth(month + 1);
if (month == 1)
setYear(year + 1);
}
}
bool Date::leapYear(void)
{
if (year % 400 == 0 || (year % 4 == 0 && year % 100 != 0))
return true;
else
return false; // not a leap year
}
int Date::monthDays(void)
{
const int days[12] = { 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 };
return month == 2 && leapYear() ? 29 : days[month - 1];
}

©2000. Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

246 Classes and Data Abstraction Solutions Chapter 6

94 // driver for p6_09.cpp
95 #include <iostream>

97 using std::cout;
98 using std::endl;

99

100 #include "p6_09.h"

101

102 int main()

103 ¢

104 const int MAXDAYS = 160;
105 Date d(9, 2, 1998);
106

107 for (int loop = 1; loop <= MAXDAYS; ++loop) {
108 d.print();

109 d.nextDay () ;

110 }

111

112 cout << endl;

113

114 return 0;

115 3

9-2-1998

9-3-1998

2-5-1999

2-6-1999

2-7-1999

2-8-1999

6.10 Combine the modified Time class of Exercise 6.8 and the modified Date class of Exerci